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l TRANSLATO_,_ S NOTE

The following errors have been noticed !n the Russian text of

this paper:

Page 14 (Russian text)

Equation (7) reads

_/ = F 0 ) _' 1' .... r ).n

should read

(_ (_ -rn: Y 0 ) _lt I' "'" ' )

Page 15 (Rusqian text)

:: Equation (9) reads n

U n+ _ _ I_ (r] rn) 12_ l
= .....r ' "'" _{r - r iT dT__ ... dTn.

i--I

Page 29 (Rus_;ian text)

t11'_ •Equation L'_J: the equation ntunber is omitted

Page 85 (Russian text)

Equation (I), last term reads:

should read
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FOREWORD /7

_ From a large number of problems related to variational principles

_ in collision theory, only a few have been selected for this book. First

of all prime attention is given to stationary problems and non-stationary

problems have been almost entirely omitted. Although the specific tran-
• s_tion from a non-stationary to a stationary problem is essential for

substantiation of variational principles, nevertheless the variational

principles, as such, might be formulated without this transition and all

concrete calculations can always be reduced to stationary problems. The

specific problem_ which are being investigated here are entirely non-

: relativistic. The application of variational principles in relativistic

_ quanttur mechanics apd field theory are not examined here at all, although

: many r_sults which were obtained in this Look are of the same general

character. Finally, for the most part, various principal problems which

are related to variational principles are being analyzed in this book.
i Numerical calculations are given mainly for the purpose of illustrating

certain general states and methods. By the same token it is emphasized

that variational principles are suitable, not only in the case of numer-

,_ ical calculations, but also for the purpose of obtaining many general
results which are at times difficult to derive by other means.

Instead of formulating the variational principles and their after

effects in the most general form by utilizing the so-called formal theory

• of scattering, this book will present concrete problems which are

sufficiently general so that the generalization into complicated /8

problems would not present any difficulties in principle. Therefore, the

conclusions drawn are general in nature and are not compromised by approx-

imations. Such a method of reporting is noticeably more awkward and

possibly less exquisite; however, I hope this method will make it easier
to read the book.

The mathematical conclusions ar_ stated with a degree of rigor

normally considered to be sufficient in physical discussions. Many

reservations as to the copditions which should be placed on the functions,

operators, etc., are avoided and are not investigated on purpose, with

the exception of those cases which represent a special interest.

Some of these results are recent and are being published here for

the first time. Up to the present time summaries a_d monographs on the

given problem were absent in the literature. In the widely known mono-

graph on the colli_on theory by Mott and Massey, only two pages in
their second edJt£on were dedicated to variational principle=. There-

for, this book can be considered as a supplement to =he monograph by

Mort and Massey.
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In order to read the book it is necessary to have a knowledge of

non-relativistic quantum mechanics including fundamentals of the collision

theory: the statemeut of the problem, the phase method, etc.

The material iLJ this book is divided as follows:

In the first chapter a short review on the application of varia-

tional principles in quantum mechanics is given. Then the formulatiom

of the variational principle for various, increasingly complicated

problems in the collision taeory (a one dimensional equation of phase;

a general problem on elastic scattering of particles by a force field;

elastic and inelastic collisions for the problem of many bodiem) is

considered. Problems are discussed on broadening of the class of

permissible variations so as to substantiate the p_:ssibility of appli-

cation of the variational principle i_t those cases when the wave functions

of the colliding particles are only approximately kn_vn.

In the second chapter a relation between the various formulations

of the variational principle is established (the veriational principles

by Hulthen, Kohn, and Schwinger). In this paper t_e relation of the

variational principle with the excitatic,n theory util_zing the Born /9

method, the method of wave excitation, the method of a self-adjusted

field, etc., are examined. Various versioa _,of direut methods of phase

calculation are discussed, and results obtained with the help of varia-

tional methods for electron scattering on hydrogen are analyzed. It is

proven in particular that there exists an infinitive successior of

variational principles, in "_hich the first twG places are occupied by

the variational principles by Kohn and Schwinger.

in the third chapter those general propezties which should be

satisfied by the amplitude of scattering and the _ffective cross-sectiou

are discussed. It is proven that these properties (the correlation of

,,nitarity and tile principle of separate equilibritm, l follow from the

symmetry of the basic functional, which is being con_idec_d in the

variational principles, by the relati)n toward the pez:4utation of the

wave function at the initial and final state. In this chapter the

_rariational princlple which is connected with the correlation of uni-

Larity is formulated; also exam_ined is the relation between _he elastic

and inelastic cross-section of scattering. In conclusion the p_operties

of symmetry and the variational principle for the matrix of transition

in a non-stationary problem of quantum mechanics are considered.

In the fourth chapter formulae which are analogous to the vlrial

theorem in problems of a discrete spectrum are derived for various cases

by scale variation. Certain results of these formulae are also stud_ed

1965024352-008
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The logical relation of the various sections in this book is such

that any of the Chapters II;, III, IV can be read SJ=ectly after reading

Chapter I. The same pertains also to the vario -ctlons in Chapter II,

w_th the exception of Sections I0-II, and also , _ons 13-1A, which are

closely related with each other.

The contents of a large part of this book were reported and dis-

cussed at seminars of the Department of Theoretical Physics at the

Leningrad Univezsity. I would llke to uxpress my gratitude to all

associates of this department for the attention and interest which they

have displayed;and most of all I would like to express my thanks .o the

department head, V. A. Fok, as well as N. G. Veselov, Yu. V. Novozhilov,

M. I. Petrashen, and P. P. Pavinsky for their valuable remarks, i /i0
am also very much obliged to F. P. Shepelenko who assisted me in writing

_ect# )n 12 and L. D. Faddeyev for the detailed evaluation of problems
related to the deriviation of the Newto_ formula from the virial theorem

in Section 31. In addition, almost all sections of this book were evaluated

in detail at meetings with G. F. Drukarev to whom I muJt express my

special gratitude.
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Cm_R I /_i!
FORMVLATIONOFT_ vARmTIO_.nPR:,,CIPZE

§I. S:-_tement of the Problem on the Collision of Electrons

with Atoms and Calculations _lch Were Made Before

Variational Methods Were _ailable

If we have an n-electron atom and a cluster of non-interacting

electrons which bombard that atom, then such a system is characterized by

the wave function which should satisfy the Schroedfnger equation *

F i 2 _]. -. -_L"_Vo+ HO(;I'" ""'_n)+ _(r0';i"""rn>=

--HI , rl, . • • , - ET. (i)

Here r0 are the coordinates of the bombarding electron; _I' ' " ' rn

are the coordinates of the atomic electrons; H0 is the energy operator

of the n-electron atOm'n_ is the interaction operator between the elec-

tron and the atom; Z_=_ I u (Atomic unit ° are-sed inIi;0";iI r0"

this case, as well as throughout the entire book.) At large r0 tbe wave

function should have an asymptotic form

ik_._0
I(_ 0, rl, • • • , _ e I' , • • • , , (2)

where k is the wave number and v is a single vector which characterizes

the d!rection of the bombarding electrons. _r(_I, • • • , _n) /12

satisfies the equation
x

i ill i

o

In this book a consecutive numeration of formulas inside of each

section is adopted. NL1en referring to a formula in another section the
number of this section will be indicated before the number of the formula.

For instance (1.3) is formula (3) Section i. If a reference is made to a

formula in the same paragraph, then the section number Is not indicated.
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HO:" : 8 _, (3)

and is a _:ave function of the basic or excited state of the atom. The

total energy E Jn (I) consists of the energy of the atom 8 and the

energy of the bombarding electron

k2

E --e + y • (4)

If we take lnto consideration the requirement for anti-symmetry of

a full wave function (including the spin function), then it is necessary

to complicate formula (2) by correspondingly sy_Lnetrizing the right part.

However, in the ca_e of a well-defined solution to equation (i)

the boundary condition (2) i_ still insufficient. In addition, we should

_so strive for fulfiilnlent of the so-called emission principle. This

amens that in all parts of cenfigurational s_ce (that is, during the

in_rease of any of the r_) only divergent scattered waves ir an a.ymptotic
resolution of the functi6n _ should be contained, in addition to the basic

term This condition is placed only on those terms of an asymptotic

solutlon which decrease inversly proportional to th_ first power of the

r-distance from the origin of the coordinates (center of atom). The terms
-i

which decrease more rapidly than r are not subjected to any limitations.

Since stationary problems will henceforth be examined almost exclusively,

it should be especially stipulated that by the expression '_ave direction"
we will urderstand the directioiL of its wave vector k. .Thus, the

expression eikr/kr gives a spherical symm_etrical divergent wave, and

e'fkr/kr gives a convergent wave. We will not concern ourselves in detail

here wlth the n_ture of the emission principle, especially since in quantum

,-mchani_s thi_ principle is of the same nature as in classical physics.

in order to accomplish this, it would have been necessary to paus on toward

non-station_ry problems. We will only mention here thet actually /'13

the principle of emission is equivalent to the requiremen_ that the

scatterir o processes sbou!d s_.tisfy the condition of causality; that is,

that the event-terse should always precede the event-consequence.

I_ _he simplest case_ when an atom is in its fundamental state, the

energy of the bombarding electrons is insufficient to cause excitation of

the atom and we do not consider the properties of symmetry, the asymptotic

form of the wave function will be

1965024352-011
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r ik'_'F0 ikro

ie + f(_, no) e _ ,,$(7 • _n ) rC
kr0 j I' ' ' -+_'

ik7
!

n) e .I. . ) ,
Y _ g ' i kr. _ ' ' I' r0' i+l' ' n

1

rI.--_ (i = I, 2, , n). (5)

"-J .

Here n.l = _i/ri' and f, the amplitude of elastic scattering as well as gi'

the amplitude's exchange scattering, are the comp]ex functions which are

determined identically duri:ig this solution of equation (i). l_irough

these values the effective cross-section i_ simply expressed. For

instance, the differential effective cross-section of elastic scattering

(without an exchange) will have the following form

= 1 , ,-- (6)
k2

If we take into consideration the symmetry of the full wave function _,

then formula (5) should be symmetrized, the elastic scattering and the

exchange become indistinguishable, and the exchange amplitudes gi will be

included in the expression for the effective cross-section of elastic

scattering. In the case of large energy of the bombarding electrons,

there will appear in (5) still other terms in the asymptotiz solution

which will correspond to the inelastic processes and ionization of the
atom.

Such a statement of the problem is completely rigorous and we

have no doubt at the present time that th_ results obtained during its

accurate solution would have been in complete agreement with the experi-

ment. However, even in the simplest case of a collision between /14

electrons and an atom of hydrogen it is very difficult to solve

equation (i) Therefore, it is necessary to introduce vacious simplifying

essumptions, In particular, an elastic as well as inelastic collision

can be comparatively easily investigated if we ass_ne that the inter-

action energy _in equation (I) is small in comparison with the kinetic

energy of the bombarding electrons. This assumption is true for electron_

So far we are disregarding the relativistic affects, the magnetic

interaction of the electrons, etc.

1965024352-012



with an energy on the order of hundreds of electron volts and higher.

Is that case it is possible to take advantage of the excitation theory,

and in the first approximation we obtain a comparatively simple expression

for the amplitude of scattering f and the effective cross-section o. It

is also easier to measure the cross-section a for rapid collision than in

the case of a slow collision. A comparison of results from application

of the excitation theory (the Born method) and the experimental data

yieJd good agreement (see, for instance, Mott and Massey, Ref. I,

Chapter IX).

Within the framework of the first approximation and the theory of

excitation, it is possible to consider the electron exchange; however, the
calculation of polarization of the atom by the bombarding electron, as

well as the distortion of the electron wave requires a transfer to higher

order approximations, which is very cumbersome and non-effective. In tile

case ef slow collision, it is necessary to utilize other methods, since

all these factors become, generally speaking, essential.

A second assumption which corresponds to the Hartree approxim;.tion,

is contained in the fact that the wave function can be presented approx-

imately as follows:

_= F (_0) , (_I' .... _n )" (7)

I_ thereby assume that the function , is known to _s from othec calcu-

lations. Then, for the wave function of the bombarding electron F we

obtain the equation*

I i V2 k 2+ u (r)F _TF, (8)

where U (r) has tile following form

n

F' Jl (_'i' n) 2 Z I-n+ j... _ "'" _ 1 dT • • • dT . (9)
U=

r , I_ - _.I I n
I I I

i=l

Consequently, the atom is substituted in such an approximation by an

effective potential field, the potential U might be calculated if a

calculation of the wave function for the given atom was conducted (for

The problem on the derivation of this equation is discussed in

detail %n Chapter II.
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instance, by using the method of a self-coordlnated field), or this atom

might be substituted by a much rougher potential, derived by the Thomas-
Fermi method.

Within the framework of such an approximation the exchange and

polarization of atomic electrons by the following wave is not considered.

It is also obvious that it is impossible co '_olTe the problem on in-

elastic scattering with this method. H_aever, in spite of the crudeness

of this method, a fair agreement with experimental data was obtained in

the case of complex atoms, even when used in the capacity of U (r), the

Thomas-Fermi potential.* Therefore, the problem of the scattering of

electrons by a central force field is essential i_ the theory of slow

collisions. However, in certain cases (for instance, during collisions

with atoms of helium and hydrogen) it is necessary to take into consid-

eration the electron exchange, that _s the sy_etry of the coordinate

wave function. The simplest way for doing this is by correspondingly

synm_=trizing the expression of (7). Then we will obtai[ for the funetien

F a more complicated _ntegral differential equation, which will contain

characteristic exchange terms. Such an equation was solved, for instance,

by Morse and Allis (Ref. 3) for the collision of electrons with atoms of

hydrogen and helium. The calculations are quite complicated. The

resu'.s proved to 0e in m,=eh better agreement with experimental data

than chose which were obtained without the consideration of exchange,

particularly at low euergie3.

The calculations of the atom's volarization is an even more

difficult prcblem than the calculation of exchange and until recently

only one paper dealing with this problem was available (Ref. 4).

If we compared the problem on collision of electrons with /16

atoms, for instance, with the problem on the calcu]atioi_ of energy levels

of multi-electron atoms [where it is necessary to solve actually the same

equation (I)] , then we will see that in the first case much less was

done and the results are considerably less reliable t_an in the second

case, This can be explained on one hand by the fact that there is much

less experimental data on the effective cross-sectlons than on atomic

spectra. Therefore, a compa£i_on of theory and experiment can successfully

be conducted only in rare eases, and the problem of the accuracy of the

methods applied in the collision theory often remains questionable. On

the other hand, the method of calculation in the collision theory is less

developed than the method of calculation for related states and the

calculations the_me]ves considerably less cumbers_ne. Particularly in

the collision theory, no one succeeded, until recently, in utilizing the

See Mott and Massey (Ref. i) Chapter IX, X, and also Gombash

(Ref. 2), Section 29. This paper contains references to original work.
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var!ational methods which have played an e_tremely importanL role in
atomic calculations of related states.

§2. Variational Principles For The Problems

Of A Discrete Spectr_n

Variational methods have been used in quantum mechanics since its

very beginning. In the first papers by Schroedinger the problem of finding

the energy levels of a particle in a potential field was formulated as a

problem of specific values. The variational principles for this type of

problem were formulated in mathematics a long time before the appearance

of quantum mechanics. Also formulated were the so-called direct methods

(the Ritz method), which have made it possible to approximately calcu!at_

the specific va" _es as specific functions based on their extreme

properties.

A large number of concrete calculations of the energy levels for

atoms and molecules was made with the help of the Ritz method. Among

these should be noted the works by Hyl!eraas (Ref. 5) (Calculations of

the Atoms of Helium) and the works by James and Coolige (Ref. 6)

(Molecules of Hydrogen). The discrepancy between the experimental data

and the figures which were obtained in these calculations was within the

limits of experimental error and; thus, tile complete applicability /I_

of quantum mechanics towards atoms with several electrons and molecules
was confirmed.

In addition to the calculation of the energy levels, variational

methods can be utilized for the calculation of such magn_tude_ as the

polarizability of atoms and molecules, the entire magnetic susceptibility,

etc. In particular, the calculations ef the pularizability of the most

simple atoms (Ref. 7) and molecules (R_f. _, which were condtcted with

such a method: have led to good agreenent w:th the experiment.

In 1930 the variational principle w_s utilized by V. A. },'ok(Ref. 9)

for substantiation of the method of the self-aligned fie_d h_, Hartree and

for the formulation of the more accurate method, the Fok method, im which

the symmetcy of the wave function (electron exchange) is taken into
consideration. It is easy to extract from the variational pri=clple the

basic equ_.tions of the Thomas-Fermi method, the equations of the excita-

tion theory, etc, Finally, as _'as proven by V. A. Fok (Ref. i0), it is

easy to prove the virial theorem with the help of the variational

principle.
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It is obvious from the abo_Te, that the variational principle is,

on one hand, the basis for pc'.-_.rfulcalculation methods and, on the other

hand, a number of important theuretical results can be easily obtained

from this principle. Thuq, this principle is one of the b_sic assertions

of the quantum theory.

However, as was already mentioned, there is on hand a large group

of quantum mechanical problems in which the variational principle was not

formulated: those are the cases when the state of the system pertains to

the continuous spectrum of the energy operator. To this type belong all

problems in coll_sion theory and particularly the problem on the collision
of electrons with atoms.

§3. Variational PriiL,'_ples For The Problems

In Collision Theory. Short Review

The first formuletion of the variational principle for the simplest

one dimensional problem of a continuous spectrum was given by Hulthen in

1944 (Ref. 11,12). Based on this principle Hulthen has proposed a /.18

method for an approximate calculation of a radial wave function and its

phase, after checking this method on simple examples.

I. E. Tamm (Ref. 13,14) formulated independently, in 1948, a
variational method which is close to the Hulthen method.

In 1947 Schwinger (Ref. 15) developed a variational method which

differs from the Hulthen method, based on the integral equation for wave
functions.

In 1948 Kohn (Ref, 16) considerably generalized Hulthen's formu-

lation, extending it to a general case of scattering. After that a number

of papers appeared (Ref. 17) in which new variational methods were

proposed; however, all these methods differed insignificantly from the two

basic methods: the Hu!then-Kohn method, which is based on Schroedinger's _:

differential equation, and the Schwinger method, which is based on the

integral equation.

Proof and examples of application of these variational methods

pertain mainly to the research of the phase of the asymptotic behavior of

the wave function for the simplest potentials - the rectangular potential

well, the Yukawa potential, etc. - and did not present any independent
interest.

t
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In 194.9 the first works by Huang (Ref. 18-20) appea_ed, in which
£+

an attempt was made to apply the variational method to the problem on the

_ collision of electrons with a real atomir _tem + _- atom of hydrogen.

Henceforth, the results by }h,ang were considerably improved by Massey and

; Moiseiwitsch(Ref 21) and were further extended to other calculations -:k •

_ th_ inelastic collision of electrons with hydrogen (Ref. 22), collisions

++_ with hydrogen-like ions (Ref. 23), and finally on the elastic and in-

elastic cellision_ of electrons with atoms of helium (Ref. 24 and 25)

+_. For instance, in the case of elastic scatteri_ on the hydrogen atom,

simultaneously considering such effects as the polarization of an atom

_+ and exchange, more reliable results were obtained by the method of a seli-

_, aligned field with the exchange calculation (the Fok method) than those
calculated by Morse and Allis (Ref. 3).

In addition to these papers a number of attempts were made to /19

_' examine the different variational methods from a single viewpoint and to

give a general review of their conclusions (Ref. 26 and 27). A close

_ relation was established between the variational methods and the excitation
_ theory (Ref. 16, 28, and 29). Finally, it is possible to examine the

_ variational methods from a sufficiently general viewpoint, if we intro-
duce the concept of the collisions operator which is ngw being widely

+] utilized in quantum electrodynm_ics and in field theory (Ref. 27 and 30).

Formulation of the variatioi,al principles for relativistic problems

is present, for instance in the work by Parzen (Ref. 31) and also in the

_ work by Yu. V. Novozhilov (Ref. 32), where problems of quantum field theory

are also investigated.

Another group of variational methods based on the integral equation

is less applicable for calculations of atomic collisions. Until now these

variational methods were used basically for calculations of nuclear

processes: for instance, for interpretational data on proton-neutron

scattering (Ref. 33).
v

Generally speaking_ all these variational methods might be used not

only for Ehe solution of quantum mechanical problems, but also for problems

:, of electrodynamics, the theory of elasticity, and others. For instance,

in the paper (Ref. 34) the variational method by Schwinger was used for

the investigation of the deflection of a flat wave on a cylinder. In the

_ paper (Ref. 35) a variational principle for an acoustical field is formu-
# fated. It might be anticipated that by utilizing these methods in the

collision theory we will have in our final calculation an accuracy com-
parable to those now reached in the theory of atomic: speztra.

+

i

a
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§4. Hulthen's Variational Principle For A

One Dimensional Equation

The Schroedinger equation for the scattering of electrons by a
central force field (1.8) can be solved by resolving the wave function
by partial waves - which are characteristic of the functions of the L20
moment operator of the amount of motion m2. We will put down the
equation (1.8) in the following form*

LVz + k2 - V (r) _ (3) = 0, V --2U (r), (i)

whereby

ik_ ._ ikr
(3) _ e + f (7 • _) e___. -_ = _-- • (2)kr , n r

After a resolution by spherical functions - proper functions of the

operator m2 - we have (see Ref. I, p. 38).

CO

(3) =I i_ ei_(2_ + I) k_ _ (r) P_ (7 • _), (3)
e_

CO

1 1 2i_f (7•_) = 2-[ (2_+ I)(e - 11P_ (7•_). (41

Here,Pg are the Legendre polynomial , _% satisfy the equations i
,[.

--+d2 k 2 - V (r) - '_(_+2 l) _ _ (r) = 0, ¢i(0) = 0, (5)dr2 r

i

We are returning here to a more familiar definition of T for the
wave functions of a bombarding electron.

r:
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and the phases __ are found from the asymptotic form of _%_

,_£ _ sin (kr - 2__2+ _£)" (6)

Thus, the solution of the general problem of scattering by a

central field is reduced to a solution of the differential equations (5),

and in order to construct f(_._) it is necessary to know only _, the

phases of radial functions _. Finally, a complete effective cross-

section of scattering is determined by the formula

OO

k2 /. (2_ + I) sin 2 _. (7)
_=0

In the case of slow collisions the phases _ decrease L_!

rapidly with an increase of _ and, therefore, in formulae (4) and (7)

only several of the first terms of the sum are essential. In the case

of the slowest collisions (on the order of one electron volt), whe_ the

de Broglie wave length is larger than the radius of action of the forces,

it is possible to disregard sll phases except the zero phase and the

problem is reduced to a solution of one common differential equation.

We will formulate the variational principle fer such a one

dimensional problem. It is necessary to solve the following equation.

+ - v (r)_ t o (r) = o, (8)

The condition

'#o (o) : o. (9)

Then

%0 (r) _ A sin (kr + _0 ), (10)
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and the phase of the wave function 09 is the desired value which 4eter-

mines the effective cross-section. As far as V (r) is concerned, i_ is
9

sufficient to make the assumption that the function r-V is finite and is
continuous in the interval 0 % r < _.

,one should attempt to form a functional, [9'*H@ dT, that is,If in

the given case
)

0

analogously to the method used for combined states, we will find

that this functional diverges for the function _, which satisfies the

conditions of equations (9) and (i0), since the behavior of the

sub-integral expression at infinity, is as A2k2sin2 (kr + _0 ) . In order

to make the functional converge, Hulthen has proposed to add within the

brackets under the integral k2 an expression of the type

(H- R.)#dT. (12)

In our case /22

I (_) = _ (r) + - V (r) _ _r, dr. (13)

The functional and its first derivative converge for the functien @ = a

constant, and satisfies the conditions

(0) = 0, _ (r) ~ A sin (kr + _), (14)

where _ is not necessarily the accurate phase _0" In addition, it is

necessary that the sub-integral expression (13) should decrease at

infinity faster than i/r. This places a condition on the consecutive

terms of the asymptotic solution of _ (r). If we should substitute iD

_hi_ functional the accura:e function _0' then it is obvious that this

functional would converge to zero.
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We will variate the function _; therefore, we will assume its

asymp_.,tic form also changes:

=.:,J+ 8@ _ (A + 5A) s.in (kr + _ + 51]); ,0'(0) = 9. (15)

We will now calc,late the variation of the functional I

oO CO

0 0

= 2 8@ + - @ dr + (@8_' 5_ (16)
/

0 0

The extra integral term can easily be calculated if we utilize

(14) amd (15)

,_ ,%a

(@8@'- _'_ -- ' -@' --
0 r=O

= A (A + 5A) k [sin (kr + _) cos (kr + _ + 5_) -

- cos (kr + _) sin (kr + _ + 5_)] =

= - A (A + 5A) k sin 5_ _ - A2kb_. (17)

Thus, if the function _ equals $0'[i'e'' it satisfies equation (8) /23

with the conditions of (9) and (i0)], then by variating the function

$0,we obtain for the functional I (Ref. II):

BI (%0) - - A2kB_. (18)
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Consequentially, I (_0) is stationary in relation to any v_riat!on which

preserves the phase _0 ef the asymptotic solution of _0" The copvers=

is also true; if for a certain function 9, the functional I (_ is

stationary in relation to an arbitrary variation, which preserves the

phase _, then _ satisfies the equation (8). This follows directly from

the formulae (16) and (17).

The .,ar_ational principle can be formulated somewhat differently
if we form the functional

J (_) = A27._ + I (_). (19)

For _n accurate wave function, this functional equals A2k'_0 ,
where this

functional is already stationary in relation to the arbitrary variation

$0' which preserves the amplitude A. Otherwise

A_0 = st_t. val. [A2_ + I (_} = St [I (_)}. (20)

In such a form there appears distinctly an analogy between Lhe phase

and t:he specific value of ;he discrete spectrum, in which case it is
also possible to write

j.Ei=st =st {g], (21)
e

condition _ _ d7 = i.
with the additional normalization

There is, howe_er, an essential difference. From the variational

principle for a discrete spectrum follow not only stationary but also

extreme properties of the functional E (by additional conditions of

orthogonality). Because of this fact, th_ actual proper value of the

operator H i., always less than the value E; thus, the lo_er E, that is

the clo_er E is to the actual proper value, the more accurate, g_erally

speaking, is the approximate function which is substituted in the

functlonal. We are concerned here only with the station_rlty of J

Consequently, even a roughly approximate function _ might yield an

accurate phase value when stated in J (_0. We are not able to determine

which of these two approximate functions is more ace=ate, using o_ly
this definition.
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It is proposed in formula (18) that 5A = 0 and that, consequently,

A does not depend on ".q. Assuming that the standard coefficient A depends

in a determined manner on _, thus limiting the number of possible

variations, we will come to other useful formulations. For instance,

i
ass'_aningtb-t A - cos _ ' we obtain the Kohn formulation (Ref. 16)

k
51 = _ = - k5 _ _ (22)

cos2_0___'0 (tg "O "

The stationary expression for tg _0 may be stated as follcws:

k tg '_0 = St [Jl (99} = St [k tg ._+ I (_)] (23)

whereby it is assumed that the asymptotic behavior of the function _ is

determiL_ed by the fo_-mula

l---l--sin (kr + _) = sin kr + tg _ cos kr. (24)~ cos

1

If we assume that A - sin _,then we will obtain a stationary

expression for ctg _0

- k ctg _0 = St [J2] = St [- k ctg _ + I]; (25)

where

_ ctg _ sin kr + cos kr. (26)

Both these methods of standardization are inconvenient because in certain

cases the multiplier A and the fuuctionals Jl and J2 are transformed into

infinity. More convenient in this relation is the standardization A = I.
Then

0
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Generally, the stationary expression for a certain function

of the phase f (,_0)will be obtained if we put A = v_). Then

9

1_ 1d- k2 -,,
f (710) = St '_f (_) + tJ _: ..... + - V i ,':_ drf , (:'8)

drz -
0

anti

(r) _/_' (rl) sin (kr + _).

We have developed here a variational principle for the case I = 0,

that is, for the so-called s-scattering. However, it is completely clear

that the case I _ 0 will differ only by the addition of the term

(_ + !)/r 2 to the potential V in all fonnulae and the constant phase

_-_ in the asymptotic form o5 _ _.........2 ........._==,,. These additions will have no

effect on the caicu_ations, and _he formulation of the variational prin-
ciple will remain the s&me:

) _ d__ + - V "!. dr =51 r,,._,,_ = 5 j _- 2 2 .,'
0 _r r I

= - kSTl£' I (29)

!co

r r -v- /
J0 r

%f (0) : 0, %_, _ sin r - _+ ,n ",., ,. 2 £./ '

(30)

@ (0)= O, @-. sin(kr. . Z_.+2 1])__ . J
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§5. The Variational Principle For A Potential _ich Has A

Coulomb Character at Infinity

We have investigated, until now, the potentials which decrease at

large r no slower than at ]/r 2. However, during collisions of electrons

with ions, the field decreases, for instance, as I/r and this case is /26
always essential.

Since the field is spherically syma_etrical, it is possible (as

before) to resolve %'(r) by spherical functions and thus we arrive, as

previously, at the equation

'-__d2 k2 q

|dr2 + - V (r)_":(r) = 0, (I)

where V (r) has the form of

V (r) = _c.,,,_v(r), (2)
r

and V Or) decreasec no slower than I/r 2. We form the functional

co

F d2 k2 c

I : .[ _ Ldr2- + - --r - v(r)_, fi_ (r) dr. (3)
0

If r.aesubstitute in this functional the function @ with the conm,on

asymptotic beh,_vior _ _ sin (kr + _), then it is expedient that the term.

which contains c/r will yield a divergent expression during the inte-

gration. The asymptotic coulomb character of the field change = _ne

behavior of the wave functions. We should state as kuow_ quantities

,Z ._ sin (br _ q + C In kr), (4)

and pizk _ to eliminate the divergent _erm of infinity. We have

1965024352-025



23

Fd2 k2 c

Ldr2 + - -r - v (r)_ sin (kr + _ in kr + ._) =

= _ 2k_+ c sin (kr + _ In kr + I!)+ 0 (i/r2). (5)r
2

It can be seen from this that 2kc_ = - c and, consequently

_ sin (kr - c-E-In kr + _) (5)2k

In the integral we will variate the accurate solution of the equation /27
ass_ning that

I,_= ,_+ 5@ _ A sin (kr c
2k In kr + _ + 5_);

(o) = o. (7)

We will obtain

I (;) = I (-_)+ 51 = 5I = (_5._' - ,_,,.t, =

ir =0

T_u_, we will obtain formally the same results as we did in the

first case; however, here the sense of L'he phase ._ _s entirely different.

_ne formulation of the phase method for che potential which has a coulomb

character at infinity is present, for instance, in the book by Landau add

l,ifshitz (Ref. 36, Section 106); f(e) is determined as before by the phases

_, but with a more complicated method. The complete effective c£oss-

section o_ as is known, diverges in the case of the field which has a

coulomb character at infinity°
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§6. The General Problem of Elastic Scattering of Particles

And The Variational Principle By Kohn

We will examine the case when the scattering center does not have,

generally speaking, a spherical symmetry_ Then the problem is to deduce
a solution of the equation

(V2 + k2 - V) _ (7) = 0. (I)

The character of interaction of particles with the scatterer is determined

by the operator V. In a simpler case this is simply a material function

of the coordinates V(r_; that is, the dispersion takes place under the

influence of potential forces which depend only on the position of the

particle. It is possible to assume that the function V(r_ is complex,

then the operator V is self-conjugate and during the processes of

scatterin_ the particles will either be absorbed or eliminated. The full

current "_hich will pass through a large radius sphere will, generally

speaking, equal zero. In a more general case, it might be considered that

V is a certain integral operator.

(7>=jK (7,7'>
q

and die properties of the operator V are determined by the properties of
'_,,.,.fnucleus K.

Considering that the process of scattering is characterized by

equation (I), our main assumption is contained in the fact that particles

with a given energy might be scatter_I, abscrbed and created, but cannot

change their energy; that is the frequency of the incident wave and the

frequency of the _cattered wave are identic_l. Thus, we have eliminated

from our investigation all inelastic prccesse_. By introducing the anti-

conjugate addition to the operdtor we are able, for instance, to consider

that the amount of elastic scattering of particles will be less than the

amount of incident particles; howeve_ such a consideration will be purely

phenomenological.* For a detailed investigation of inelastic processes,

a dynamic examination of this scattering center itself is necessary.

In order to formulate a variational principle we should inves-

tigate together with a solution to equation (I), which has a common

asymptotic form

They are primarily received in this way: for example in the

description of the elastic scatterinB of neutrons by the nuclei.
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- ik'_.r eikr
Y (v r) _ e + f (3, n) (3)' _7-'

also the solution to a hermitian conjugate equation

(V2 + k2 - %;+) _ = 0, (4)

which will contain, in the case of large r

-ikr

ik_.r e (5)(3,n_~e + _ (7,_) kr '

in addition to the incident wave, only convergent waves will thus satisfy

the "reverse" emission principle. It is obvious that the scattering

process can be characterized only by the function _* which, after the
substitution of v by -p, takes on a common as3_aptotic form (3) and /29

is the solution to the equation

(V2 + ]2 . V+_ _* (_ _, _) =

= (V2 + k2 - V') Y' (3, _) = O. (6)

In this case V' signifies the transpose operator; the nucleus K' is

related to the nucleus of the operator V by the formula

K' (7, 7') = K (7', D. (7)

If the operator V, in particular, is a functional, (diagonal in a

coordinate presentation) then V = V' and

(_', _) = ,_,,(_', ;).

We will construct the functional

I = _[ _* (_2' _) (v2+ k2 " V) Y (P'I' r') dT =

=r 7, -, ,
(- 72, 7) (V2+ k2 - V) Y (uI 7) d'r (3)
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which obviously converts into zero for the accurate functions _ and _.

We will search for the variation of this functional, assuming that the

assnuptotic form of the variated functions is also subjected to a change,

ik_ I ._ ikr

(_l (_l e~e + [f '_)+ _f '_)]-_r ; (9)

ik92 "_ ikr

~ e + [f' (?2' _) + 5f' ('_2'_) ]e_____kr " (I0)

Then, by dropping the second order magnitude

[SY 2' (V2+ k2 - V) 8_ I dT,

we obtain

51 =.[ _2' (v2+ k2 " V) 8_ 1 dT.

Obviously, the variation of the function _2' does not change the functional
in this approx_ atlon.

We wi] 1 divide all space into two parts by the spherical radius R

w_th its center at the origin of the coordinates and we will utilize /30
Green's form_ !a. Then

Sit

+ [ 5T I (V2 + k2 - V') T2' dr +

r<R

+ J" T2' (v2 + k2 " '7) 5T 1 dT. (12)
r>R
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The second integral in the right part exactly equals zero,and the third
integral approaches zero as R-_ =. During the search for the limit of

the first integral we may substitute, ins_:eadof the function 5_I and _2'

their asympLctic form and then drop all terms appearing under the integral,
-2

which decrease more rapzdl3-than R , siuce when R -_o= the integral of
these terms will approach zero along the surface of the sphere. The

integral of the terms which decreases just like R-2, but contain the flat
wave will also tend towards zero, due to the presence of an oscillating

ikR_ -n
multiplier e Thus, we have

r eikr7

SR

eikrn _ F "ik_2"_ ikr_

- LFSf(_i'-_n) _--r _ _r LIe + f' (" _2' n) e_r JJr=R dS =

-ik_ .r ikr ikz -.i_2.;_
= liraj"LeF 2 e____, ik e e (- • _]
R__o kr kr ik_2 jr=R

X

2_

x 5f ('_1' _) dS = lira ill d/_ e ikR(l"c°s0) (1 + cos 0) x
0 0

2_ 2
ikR/P P

x 5f. sin 0. d0 = lim iR J d@ J e (2-7) 5f • d7. (13)
R-_co

0 0

In this case the direction _2' as a polar axis within the spherical

coordinates, was selected. During :he differentiation of r, the /31

term which is proportional to R _ was drepped and the exchange of 1
- cos e = 7 was conducted. We will partially integrate the integral
by 7. Then

2_ ikR7 17=2R_= 0 7=4)
2

"7 e 71 8fl . (14)
0 :
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The internal integral in this formula tends toward 0 when R -_=_; the

,: extra integral term converts into 0 on the upper limit_ and on the lower
_: limit it equals

i:, e (2 - 71 5f = 5f = _2 If i ). (15)

_.: 7=0 0=0 k i ' 2

It is obvious that when 0 = 0 the function 5f does not depend on _, and

we finally obtain
+

k _ . Gi'_. 81 = 5 _E' (- 'Q2' i) (V2+ k 2 - V) _ _) dr =

_._ 4__E

_ = " k 5f (_I' _2 )" (161

_" This same formula can be acquired somewhat differently by resolving

4, expressions (9) and (I0) by the spherical fanctions for the asymptotic

form of the function _I and _2' and by substituting the proper solutions

in formula (12), This method is used for the solution of analogous

_ formulas in Chapter III.

We will now examine a general bilineal functional

e- i (g2' _i/ = _2 (v2+ k2 " v) _i d,, (i71

f

_ where _I and _2 are arbitrary functions which have the following

asymptotic form

,} ik_.._ ikr
e___ (i= i,P.). (i8)I, _i _e + gi (_) kr

Then, on the basis of (16), it is possible to confirm that if the /32

variation D_i and 5_2 change only the amplitude gi(_1 in formula (18)

then the functional

3 = gl (" u'2) + _ I (@2' 'Z1)' (19)
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is stationary in relation t'_ all these variations only in the case if

_2 = _' (_2' r), _i = _ (_i' _)" In that case the functional J i:self

will be equal to the amplitude of scattering f (_I' " _2 )" Thus,

f (_I' - _2) = St JfJ_(_2' _i)_" (20)

If the operator V is s>munetrical, then the function _' (172,3) =

= _(_2' _) is the solution to that same equation (i) and during the

examination of the variational principle we deal only with one problem of

scattering_ the problem which is characterized by equation (I).

If the conditions of symmetry are not observed, then we should investigate

two problems: in one of the;e problems the interaction with the scatterer

is characterized by the operator V and in the other problem - by the

operator V'. Particula_l_ if the operator V is self-conjugated (hermitian),

then V' = V* and the second problem is characterized by the complex

hermitian operator V*. Such a problem occurs for instance if we consider

the magnetic interaction between the bgmbarding particle and the scatterer;

the operator is then complex and self-_onjugated.

The wave functions _ (_, _), _ _), which we are invest±gating
ik_ -'_.r

here, have the form of a flat wave e at infinity and, thus, charac-

terize the state of a free particle in the presence of large r with a

determined impulse k_[ The scattering amplitude f (_I' _2) determines

the proper validity of transition of this particle from a state with an

impulse k_ I into a state with impulse k_ 2 as a result of scattering.

Returning to the common hermitian definition of the functional !

k2
I = Jb_2" (V2 + - V) T1 d7, t21)

We are able to formulate the results of this section in a general /33
form.

Let us examine the transition from a certain original state I into

the final state II, the probability of which is determined by the square

of the coefficient of the scattering amplitude f. Let us further assume

that the functions TI and {2,when substituted in the functional I

(invariated as well as variated), satisfy the conditions:
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:_i I. a) The fundamental term of the asymptotic solution of the

30

function _i (which does not disappear when r -, o0) charac-

:_ terizes the original state of the particle I;
i, b) the fundamental term of the asymptotic solution to the

_:' function _2 characterizes the final state of the particle II:_

2. a) In addition to the fundamental term the asymptotic solution
-i

_ to the function _i (among the terms which decrease as r )

,: contains divergent waves only; that is,_ I satisfies the direct
principle of emission.

: b) In addition to the principal term, ,_heasymptotic solution

_ to the function _2 contains convergent waves only; that is,_2

satisfies the reverse principle of emission.

If, in addition, the following conditions were carzied out,

3. a) The function _I is the solution to equation (i) which

characterizes scattering,

b) The function _2 is the solution to conjugated equation (4),

then the variation of the functional I is proportional to the variation of

the corresponding araplitude of scattering f in the function _1.

The reverse assertion which c-n be formulated as follows is also

justified:

_ If in the case of not variated and variated functions conditior,,sJ

_i_ i and 2 were carried out; if in addition, in the case of arbitrary

_c variations 8_/1 and 8_ 2 which decrease at infinity more rapidly t:han r "2,
_! the variational functional I eqt:als O, then condition 3 is fulfilled.

_: After pzoper correctlons this formulation of the variational

_ principle proves to be accurate in the case of more general problems in

collision theory.

[

! §7. Elastic Scattering of Electrons By A Complex Atom
And Calculation of Exchange /34

Th_ variational principle which was formulated in the preceding

section may be generalized in the case of a collislon between electrons

and atoms. For the sake of simplicity and concreteness we will, hence-

forth, consider _ollisions between electrons and atoms of hydrogen;
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however, after obvious genera]izations the results will also be applicable
for more complicated problems.

•"qleSchroedinger equation in a given case will have the following
form

_v12 v22 2. 2__.L_ = + + rl + r2

. 2+ k2 . ! > _ (31, _2) = 0_ (i)
r12

I 2
E = _ (k - I).

The complete energy E consists of the energy of the bombarding electron

k2 I
_- and the energy of the hydrogen atom in the fundamental state E0 - 2"

We will assu_e in this section that the energy of the bombarding
electrons is not sufficient to excite the atom; that is

k2 i I 3
T < z0 "El = _ "_ = _ " (2)

_'henthe wave function will have the following esymptotic form

• ._ ikr27
[ ik_'_2 e_0 (rl)e + f (,7,_2) k-_--2j, r 2 _

(7, _I' _2 ) ~" ikrl (3)

_0 (r2) g (_*'_I) e
krI ' rI -*®

whereby the wave function of the fundamental state of h)drogan /35
I -r

_'0--_ e satisfies the equation

2+ r _0 (r)- O, (4)

as well as the condition of standardization and is a material fdnction.
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The scattering amplitude f (_I and _2) cbmracterizes the elastic

scattering and g (_I and 72 ) characterizes scattering with an exchange.

As a result of the similarity of electrons, these processes are dis-

tinguishable only if the spins of ;_oth electrons are antiparallel. In
that case the effective cross-section equals

= I 2 2)
oI k2 (Ifl + Igl • (5)

If, on the other hand, the spins of the bombarding and atomic electrons

are parallel, then the coordinate function should be mntisy_metric and
we obtain for the effective cross-section

I 2

_2 = k'2 If - gl " (6)

By neutralizing all possible orientations of the spins of the bombarding

and atomic electrons, we obtain two cases of parallel and two cases of

- antipaxal!.el orientations. Thus

1 1 = l _l 2 l g12 t
o = 7 Cz+ g °2 k-_ ,_ Ifi+ 7 I + g If - g!2_. =

i

=z(ifl2 1 z :. -k2 + lgl2 - _ fg* - _ g;=

=-!-If! if �gl2 3 If" 12_ 1 -
k2 '..4 + _ g = _ o + _ c . (7)

We can see from this that, during the calculation of the effective cross-

section for a two-electron problem, it i_ possible to search first for the

coordinate of the wave function _ with a_ asymptotic form (3); this,

without taking into consideration the Pauli principle and the _ymmetry

properties, should be considered only during the calculation of their

effective cross-section by known amplitudes f and g. It is possible, /36

however, to consider the properties of s_mmetry from the very beginning

a_d to look for a solution to equation (i) _± , which satisfies the

condition

r_(Tz' _2) = ± 'Y_(_2' rl) (8)
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and which h=s the following asymp_n_ic farm

i_2 '- ik'7"_2 ikr2_

"!'0 (rl) Le + f_(_' n2) e i r 2 -_ =
kr 2 a '

Y+ _ (9)

I . !-ik_'_l ikrl_

L'--,_ _0 (r2)-e + fl (3, nI) e ; -_ =kr I j' rI

A synlnetric function corresponds to the full spin S = 0, the anti-

syBInetric function corresponds to the spin S = i. The effectiv{ cross-

section which was neutralized by the directions of the spins is then

calculated by the formula

I + 3 =I__FI 2 3 ?'_

:_ +_- k2",..5If+t +_ If-I _. (lO)

It is obvious that the functions _ can easily be obtained from the

functioc _;

.? 1 [_ (_1' r2) + _ (_2 _1 )] (ll)_= _., 72) --/-f , .

We wii_] now examine the f.',ncticnal

= r[ d72, (12_(_2' #1 ) JJ _2L#I a"Fl

whereby the asymptotzc form of .+he function _I' @2 :_ analogous to the

%symptotic form of the fui_ction

I'-

+ F. (_2) ' r2

@i _ ikrl t_3)
_0 (72)Gi (_i)_ _l_ _

[ kr I '

(i = 1,2)
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where Fi, G.l are certain arbitrary f.,nctions of the direction of the unit

vector _. First, it is necessary to convince oneself tl:at the i_tegral

I is convergent. For this purpose it is necessary to investigate the /37

behavior of the desired integral expression for large cI and large r2.

Utilizing the asymptotic form of the function _ (13), we obtain in the

case of large r2

~ (V12+ V22+1

. ik__ "r2 ikr2_
2 2 2 + k2 . 17 *0 (_i) /e 1 +Fle_...__ ,__

+ rI + r2 r12 _k kr 2 J -

_ e /i" ,7
= @0 (rl) F('-_2 _---__,F ik'°l'r2 ikr2

L_I2 rl2J qe + FI kr 2-2 + 0 _ 3J j" (14)
r2

"'3

The terms on the order of r2 are obtained during the effects of

the angular part of the Laplace operator on the function F and also,

possibly, from the consecutive terms in the asymptotic solution ;_I" Thus,

the terms which are essential and the sub-integral expression have the

following form:

ikr2. ik,7 r2 ikr2_

,2 (2 2 <eik_2"_2 e ,,f I" + FI ). (15)
V0 (rl) Mr 2 r + F2 k-_2 _ _ke kr 2 .

If we should integrate in the beginning with respect to _I' then we
come

to the calculation of the integral

J '%0 (rl) dTl (16)
_2 r

which c_n be considered as a potential neutral system consisting of a

change which is located at the origin of the coold_nates and a change of
2

the opposite symbol which is distributed with a densitv _0 (rl)" In our

case, the integral (16) decreases exponentially and, consequently, the

convergenc_ of the integral at large r2 is assured. Similar reasoning

might also be applied in the case of large rI.

" I i
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However, this entire reasoning i._.true only in tile case of electron

scattering by a neutral atom. in the case of a scattering of a_: .,on the
-I

integral (16) will decrease only as r2 , since the central and distributed

charges will not compenEate completely. In that case it is necessary to

complicate the asymptotLc form of the functiot: _i in a manner analogous to

that used in Section 5.

We will now exanine the variation of the functional I, substituting

in it _'I = _I' _2 = _. [the correct solutions to equation (i) with an /38

asymptotic form (3)]. Thereby, in the case of _i' we will have _ = 71; in

: the case of _2 we will have _ = 72 . In a given case the interaction of

the electron with the scatterer will be characterized by the material and

self-conjugated operator; therefore, the ft,.,Lction.3YI and _'2 should

be the solutions to equation (i), alone. First, we will assume that

during the variation of the functions _i _ in the asymptotic form, o.11y

the scattering anplitudes are subjected to a cha,age.

I r ik_

% (rl)Le i'F2+

ikr 2

_._ = _._ + 5_.__ + (_i' + 5i , r2 -_o_ , (17)

ikr 1

",_g(_i ' _i) °
_0(r2 ) . + Bi_ kr I ' rI

Then

&l = _2L_I dT I dT 2 lim dTl _R
' RI -__ rl_'Kl r2 2

R2 -_0o

[ i'
= lira r dTI r2_R2 BTILT2 dT2 +RI -_ _ rl--i

R2 -.=

I
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r2_'d{2 ri_=_i _rl

d dS2_

The first integral equals 0 since 72 satisfies equation (I). In

the second and third integrals we can substitute instead of 12 and _I

their asymptotic expressions. Then, the integration, with respect to the

volume and surface, can be made independently and the volumetric integral

of Y02 tends within its limits toward unity. In the case of large

values rI the functions Y2 and _I contain only the divergent waves and,

accordingly, the surface integral by dS 1 will also become zero. The

integral by dS 2 does not differ at all from the integral (6.13), which

was calculated in the preceding section. Thus,we obtain /39

(_1 _2) (?'l' 72)] 4_ " _2) (19)5I Y2 ' ' _I ="-_ gf (Ul' - "

If, instead of the function _2 (_i' _2 ) ' we would substitute in the

functional the function 12 (_2' _I ) ' then by repeating the derivative we
obtain

L,7[

5I [_2 (_2' 71)' _1 (;1' _2 )_ :" "_ 5g (_1' _2 )" (20)

If, in the functional l,we would substitute Lhe wave function "_I' _2' then

by utilizing formula (ii), we will obtain

(_2'_I 4_ _f= -. - 7.). (21)8! + ) -- _- (;l'

By utilizing formulae (19) - (21) it is possible to construct the

functionals J, which give a stationary expression for the amplitudes f

and g or the amplitudes f_, in a manner analogous to that used in Sections

4 and 6 for more simple problems.

,! m ' I
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However, the variational principles are applicable in practice to

a very limited class of problems in this form. Actually, by variating

the functions 411, _2' we assume that the wave function cf the fundamental

state of the atom '_0 remains unchanged. Consequently_ in order to write

the function _i which we can substitute in a func_ioI_ .I I, it is necessary

to know precisely the wave function of the fundan_ental state of the atom.

This is possible only for the case of a collis±o_, bet_ en electrons with

the hydrogen atom which was examined here. If, on th_ other hard, we

attempt to substitute in I the function with an approximate wave

function _0 = _'0+ 5_0' then in the case of large rl, r2 the function L_I

will not decrease and the integral will diverge.

This difficulty can be overcome if we assume that, simultaneously

with the variation of the function '_0' the operator L also variates so

that the functional remains convergent. For this purpose it is necessary

that the operator contain, instead of 2E0 =- I the value 2E0 j" ,'O

" r_ _0 dT which differs for various functions. Such a changed /40

operator L should, therefore, not be considered during the calculation

of the first variation I, since from the variationa] pripciple for a dis-
crete spectrum we know that the variation _E = 0 un,_er the condition that

the standardization of the function _0 is preserved. In that
case

r ik_i "_2

(rl)+ 8' oLe +

ikr 2

= _ + 5'*" _ + + 5fi ) ek-_2 ]
i i i (fi , r2 - , (22)

ikr 1

[_0 (r2) + 5*0] (gi + 5gi) e _
kr I ' rI -_ .

It is easy to convince oneself that in formula (18) for 51 in the first

surface integral, which was already calculated in Section 6, one more
term will be added.

I I
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_'_" 38
/

_ ikr2.h

_ _ d7 _ _/eik_2"r2 + f (_2' n2) ekr 2
lim %0 (rl) 5'_0 (rl) ir/R2[\ x" RI-"_ rl i =

_,_ R2"
i[:_

ikr2_ ikr2._

# x _or2 _e + f(_l' _2 ) kr 2 y - t\e + f(_l' _2 ) kr 2 7 x

:- -. ikr

_. x _ \ + f (_2' n2 ) kr2 j ] dS2. (23)

_" By calculating the surface integral with the method which is analogous to

_ that already applied in Section 6,* we obtain zero and, thus, the external
_L
_. form of the variational principle changes once again.

._

T2' Y1 4_ -" - _' ) (24)_ _z ( ) =---_f (Ul zk ' "

S"

_ However, the functional I has already a somewhat different form

- _ r. ro

- _ + k2+ 2g} _l d'rl d'r2; (25)
_}: r12.,j

L _

_" where /41

_ -" ikr

/ e z" ikp 1 "-_2 (;2) e 2-_
(_i) _e + F kr2 j , r2 -__ ,

_i .o ikrl (26)

) _ G e(_2) (gl) , -. =..
_" kr 1 rl ,.

: This type of integral is examined in more detail in Chapter III.

i
.I
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_(_) satisfies the condition _ I_ (r_)12 dT = I;

1",= J '_* - _ " rJ _ dq-, (27)

and the variational function is determined by formula (22).

It is also easy to formulate the variational principle in a

similar form for an elastic collision of electrons with any given multi-
electron atom.

§8. Variational Principle for Inelastic Collisions

In this case we will proceed in accordance with a fundamental

idea which was expressed in Section 6; that is, we will examine the

variational functional

_ _2 (H - E) w.I d-_,

substituting, instead of _i' the wave function which corresponds to the

original state and, instead of _2' the wave function which corresponds to

the final state. In order to avoid cumbersome definitions we will

consider the collisions of electrons with hydrogen atoms, as before.

If we assume that before the collision the atom of hydrogen _as,

generally speaking, in a certain excited state with the wave function

_'i (_) ' then the corresponding wave function which satisfies equation

(7.1) will have the following asymptoti_ form.

I ._ .-._ iki_'r2

!9i trl) e +

_- iknr 2

y(i) (_; _I _2 ) + _'_n (_i) fin (u, n2) e , r2 ._= ,, _ knr 2 (I)

n iknrl

@n (_2) gin (_' _I ) e , rl . =' ;
knr 1

n

I
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where _n (3) satisfies the equation /42

1 V2 1"I
(" _ - rJ 'On : En_n' (2)

and the wave magnitudes k are determined from the law of conservationn
of energy.

k2
n

T+ En :E. (3)

" _2 )The scattering amplitude fij (Vl' determines, at the given total energy,

the probability for scattering of a particle with direction 71 to a new

direction _2 with the atom making the transition from the i state into

the j state. The amplitudes gij determine analogously the probability

of an inelastic exchange scattering. The differentially effective cross-

section of the inelastic scattering is determined by the formula

I 2

°ij (71' 72) -k.k. Ifij (71' _2 )I (4)
z ]

Integrating with respect to _2 (the direction of the scattered electron)

we obtain a complete cross-section for the given inelastic process

JI '°ij (g) - k.k fij d_o (5)

Fin_lly, the complete cross-section of scattering will be obtained after

the aur_nation by all possible final states, taking into consideration the

exchange.

i 2

j ;

Equations (4)-(6) are true if we consider both electrons as distinguishable

particles; that is if, for instance, the projections of the spins of the

bombarding and atomic electrons on the z axis equal_ respectivel_ + 1/2 and

1/2. A calculation of the symmetry of the wave function can be accurately

conducted exactly as was done fn Section 7, and we will obtain, for fnstance_

the following formula for a complete cross-section which is neutralized L4_3
by the spins of both electronsl

e
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li , _ r ]i k. L_ !ftj (i,,._')[2 de' + _ Ifij (._-,u')[ 2 de' =

Jj

'Z' --k. _. ]fij (7, 7') + gij (_' _') j2 d0o'+
I . ]

3

3

+ _.[' llfij (7, _') - gij (3, _')[2 do._']. (7)

The symmetrization of the wave functions _(i)+ might also be obtained from

the function _[i)"" by formula (7.11).

Let us assume that equation (3) can be carried out only when

i < N, that is

V.N+1 < E. (8)

Then, the energy of the bombarding electrons is sufficient to excite

only the first N -l levels, ionization of the atoms is impossibl_ and

sums by J and n in formulae (I), (6), and (7) contain only a finite

number of terms. If_ on the other hand, the energy of the electrons is

sufficient to ionize the atom then, in addition to the summarization by

the discrete states, the integration bv the states of the solid spectrum
should be conducted in these formulae.

We will examine an inelastic scattering of electrons which is

characterized by the amplitude fij (_i"_2)" Then the wave function

_i (i) , which corresponds to the original state and which is substituted

in th_ risht part of the functional, should have an asymptotic form (i)

with v = _I" In accordance with the rule which was brought out in

Section 6, the wave function _2' which corresponds to the final state,

should have the following asymptotic form:
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j5- ik 2"_'2+
,j*(F1) e

'_ iknr

_ , knr2 , r2 --_, (9)

_ iknr I

(F2) nl) e%* ' , rI -*_.
n gin (- _2' knr I

n

We will calculate the variarion of the functional /44

I = i]' _"(J)2L YI'(i) dTld_2 ' (I0)

where the operator L has the _ame form as in Section 7. We will, thereby,

assume that in the asymptotic solutions uf (I) and (9) only the amplitudes

fij and gij vary. The convergence of the functional of the variated

funct._ons _(i) _j)-I ' can be _roved in the same way as was done in Section

7. Essential in the given case is the fact that the complete enr-rgy of the

states, which corresponds to each term of the asymptotic resolution, is

_ identical. Mainly, thanks to this fact and as a consequence of the

orthogonality of the atomic functions _i (_) ' all divergent parts in

integral (I0) are eliminated.

The variation 5I is also accurately calculated in the same way as

was done in Section 7; however, during substitution of asymptotic func-

tions _I' _2 into formula (7.18) it is necessary to utilize the formulae

(I) and (9).

After substitution, we obtain

'_2

BI = lim j* ({i)e +
RI_ r1

R2-_

+ On (rl) Jn (" _2' n2 ) k x
n

i I

1965024352-045



43

_ ,_ eikmr2h
X _._ *m (rl) 5fim ._i,. n2) kmr2 / "

m

eikmr2

-_i,!_m (31) 5fim (vI, n2) kmr2 _xm

G %r2-]-ikg 2"r 2 v- _ f' -" e

x 0-_2_ j* (31) e + _ _n ("1) jn (" _2' n2) knr 2 _ dS2 +
n

iknr 1r
dr 2 { !<_gn* (_2) ' (- 72, _i) e

+

r2_R 2 rl'!RI n gin knr I /

X

ikmr i_
0 r - (_l _i) e _

x _!x_ _m (rl) 5gim ' kmr I /m

< _ "_ eikmrl
- _m (_I) _gim (_i' ni) kmrl / xm

-_ eiknr i_

n

It is easily convincing that during the transition to the limit

some of the terms eliminate themselves reciprocally, and part disappears

as a result of the orthogonality of the function _i" In the final

calculation a _on-zero contribution is given only by the term

"b

. "ikj_2 "_2
_j (_i)e (12)

function _J) and the term
and the

eik_r 2

Sj (31) 5flj (71 , E2) kjr2 (13)
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and the function _p_i) Calculation of• '-"o._,.integral is conducted exactly

as ir Section 7 and we obtain

4___
--D

81 : - k. _fi]" ('Jl' u2)" (,14)
]

If we exchange positions of the _rguments, rI and iN the function

¢2 (j) , then we obtain, analogously

51 : 5 j_ 2 _i ) (_i' r2) dTld_2 =

(71 )= - _-- 5gij , • (15)
J

From these formulae we immediately obtain formulae which are analogous to

(7.21) for symmetrized functions and amplitudes.

It was assumed up to now that the atomic wave functions "_. in the
i

asymptctic expression for _i)" and Y_J)" do not variate. Just as was done

in the case of elastic scattering, this formula can be generalized in the

case of the variation of the function _i" The convergence of the func-

tional from the variated frnctzons in this case can be assured if,

simultaneously with the change in the function _ri,we also change /46

the wave numbers k. in such a manner that we preserve the equalities
1

k. 2

f_, _ IV2 I_A, z, _'i (_) - _ - rj #i (_) aT + 2 - E. (16)

In that case, the divergent numbers in the subintegral expression dis-

appear. If, in aadition, the conditions of orthogonality and standardi-

zation are carried out in the case of the variated functions as was done

before, then the expression for the variation 81 remains unchanged. Th_s

type of variation should be considered if the atomic functions _i are not

accurately known. Investigation of this type of variation is also

necessary with the conclus,on drawn from the virial theorem (see

Chapter IV).

I Ii
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In the process of formulating the variatione! principle for this

giveP problem we have, in fact, never utilized tbe concrete propertie_ of

the hydrogen atom. Therefore, the formulation of the variational prin-

ciple (14) represents a general formulation for arbitrary inelastic
colli3ions.

Thus, by formulating the variational principle for various

specific cases, we obtain certain functionals, which are stationary in

relation to a broad class of variations, in the case when the variated

functions satisfy the Schroedinger equation. To be exact, these values of

physical interest, in this case, prove to be stationary, i-_., the

phases and amplitudes of scattering just as in the case _[ a discrete

spectrum when the average energy of the atomic system was statioDar'r.

Such a circumstance is pcrticularly essential during the develu_ment of

approximate methods for -be calculation of all these values.

The investigated ormulation of the variational principle for

elastic and inelastic c_lisions in this chapter was briefly discussed _n

the paper by Kohn (Ref, i%_. This same formulation for concrete problems

of collisions between ele_.rons with hydrogen atom_ was pzesented later

in the paper by Gordon and Jones (Ref. 37).

The possibility of variation of atomic wave functions in an

asymptotic form of a complete wave function was discussed in the

dissertation by this author (kef. 38).
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CHAPTER !I /47

PELATION BETWEEN VARIOUS FORMULATIONS OF VARIATIONAL PRINCIPLES

AND THEIR APPLICATION IN COLLISION THEORY

§9. Relation Between X_e Variational Principles

By Hulthen and Kohn

We will prove that the formulations ,-t the variational principle

i'.iSection 3 and in Section 6 are equivalent, if the potential V (r) is

spherically symmetrical_ that is, if the forces are of a central nature.

In that case, the functions YI and _2 in the functional (6.8) may

be resolved with the l,egendre polynomials, as was done in Section 4 (4.3).

In the case of the variated functions fi,we obtain

= _ + _'. =

=,__}(2% + I) i e kr (@_ + 5%%) P% (_i n)" (I)

_=0

The solution of the variated scatterimg amplitude f is obtained from

formula (4.4)

f. = f. + _f. =
1 l 1

:! Z :2i (2_ + I) Ve21(_ + 5_£)

We will substitute the solution to the function 7. in the 4_
i

functional (6.8) apd we will separate the integration with respect to

the angles.
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*+*' i(_ +_ .+_,+ 5_, ,)

_(_2'_l)--_)(2,+ i_(2_'+11_ i e x
_,*'=0

rd2 , ' ,

? k2 (, + 1)7 (,_. + 5_ ) dr xx j ('2 + 5,i.,)'--+ - v(r) -

0 Udr2 r2 .J

x j P, (5' 1 _,) P.6(_2 n) d_o. (3)

In the last integral the integ_rration is conducted with respect to all
directions of the unit vector n which can easily be calculated if we

"! utilize the theorem for addition for the Legendre polynomials

4_r P_ (_i _2 ) . (4_i P_ (_i n) e,' (_2 " _) do0- 2. + I • 5,_,

_he radial integral in the expression of (3) converts into zero in the

case of the invariant functions _. Therefore, during the calculation

of 51 it is not necessary to take into consideration the phase variation

in the exponan_aia] multiplier. We will obtain

L , 2i_, k- 2 -51 = (2_ + i) (-) e 4_ P, (Vl " _2 ) '_

_=0

x ;'%+_,) _a__. k2_.,_ a._j_n._ %+ ,_,__. c5_
J 'dr 2 r

On the other hand: as a result of formula (2), the variation 5f may
be stated as follows:

_ 21_ _2)8f _1' -_2 ) = (2,+ 1) e "_5,'q_I'_(_1 - =
_=0

=) (2,+ 1) e Sl:_ ( P_ (_'1 " _2)" (61

g
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We will utilize the variational principle as formulated by Hulthen.

The radial integral in formula (5), according to (4.29) will equal - /49

kF_!_, and we will thus obtain formula (6.16)

51 = 4_ (7-T _f i' - _2)" (7)

Vice versa, by substituting in formula (7) the solution of (I) and (2) and

by comparing the coefficients at identical Legendre polynomials, we obtain

the formula (4.29)

(%_ + 5_'£_ ,/'d2 + k2 - V - _ (_ + I)_ (_£ + dr
j[" . .dr2 r2 j 5_,_) =

= - kS,_ . (8)

In an analogous way more complicated cases can also be proved. We

will examine, for instance, excitation of the first (2s) level of a

hydrogen atom by an electron with a moment of 0, that is by its s-wave.

If we consider the electrons to he distinguishable, then the wave functions

_'_' _2 will have the following asymptotic form;

_'0 (rl) e + fOn (_I n2) %n (_I) e' ' k ," '
n'2

n

y_O) _ ,,. r2 - _ , (9)

iknr I

/.$_Dn_" (_i _ ) _1,n(r2) eknrl , -_ .
, nI_ . rI '_ ,

n

iknr 2

* - ' cfi ,
_I (rl) e + _n f£1 #n* knr 2

_,_l) ~ r 2 -" = , (io)

ikn_ I

Z g£l (_2' nl)*n ( ) eknrl , rl -_n
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If we resolve these functions with respect to pz_tial waves and if we

define the resolution coefficients of this scattering amplitude f0n'

f' ' by the Legendre polynomials, respectively, through COn , /50g0n' In' gin

' ' then the wave function for the s-scattering wil] have thedon, Cln, din,

following asymptotic form:

S iknr 2

sin kor 2 _ _ %n (rl) e ,
_0 (rl) k0r 2 ' /, COn Knr 2

n

IS _ r2 _ _ ' (ii)

S iknr I

don ,n(r2) e
knr I ' rI - = ;

D

sin klr 2 S iknr 2

2' *
'_1" (rl) klr 2 + Cln.;f n (ri) e ,knr 2

n

_(1) r 2 , (12)2S _ _

S ikt_rI

_d _ . e, in _n (r2#
knrl ' rl -"= '

n

whereby in the formulae of (ii) and (12) the summarization is conducted

only in respect to the s-state of hydrogen. From the variational

principle for inelastic processes, which was formulated in Section 8,
we obtain

2 2 2 _2_+ k0 _ i _0) dT I dT 9

4_

= " _ii 5fOl (U'l' " g2)' (13)

! Fr_u this,we easily obtain:
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_ 5 /_" _2s'(1) _V_ + 2 + 2_+ 2__..+ 2._+
_ .. 72 rI r2 r12

4_

2 I_ _(0)isdTl dT2 k-_ (14)+ k0 - = _ 5%1 •

_ This formula can also be easily obtained directly by calculating the

(1)
_(0)"" and by utilizing Green's formula.functional

I'_2s( ' is

In such a form the variational principle is convenient only for

J concrete additions, since, in practice, variational calculations are /51
_unuu_ed only in the case of slow collisions in which the first partial

_: waves (_ = 0.I) play the principal ro!e.

_ The relation between the variational principles of Hulthen and

Kohn investigated here was mentioned in the works of (Ref. 37 and 39).

;: §I0 The Variational Principle and the Excitation Theory%

It is a well known fact that the princip_l formulae in the

stationary theory of excitation from related states might be derived from

the variational principle. Analogous results can also be obtained in the

theory of collisions from the scattering amplitudes and phases, if based

on the stationarity of the corresponding functionals.

Let us examine the equation:

(v2+k 2- vo -_v) _ (_') =o, (1)

where the operators V0 and V should satisfy the same conditions as did

the operator V during the derivation of the variational principle. The
: operator NV will be considered by us as excitation. The solution to this

• equation depends on the pa,xameter k and should have the following

_ asymptotic form:

_ ik_._ ikr

i ,(_,u, 71 ~ e + f (_,_, _) e____kr " (2)

7

T
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We will resolve the functions 4 and f into a series along k degrees.

• + kn* (7, _) + • • , (3)n

f (k, 3, n) = fo (3, n) + kf I (;, _) +

+ • . • + knf (u, n) + .... (4)n

Then, for the function 4n,We obtain the system of equations:

(V2 + k2 -V O) 40 = O, (5)

(_72+ k2 " V0) _n = V_n-i (n = i, 2, ") (6)

and these equations will bave the following asymptotic form: 5_

40 '_ eik_'_+ fo (3 n) eikr ikrkr e, , .--. _ . (7)

If we should limit ourselves to the n + 1 te=m in the succession

of formulae (3) and (4), then we obtain the approximate functions:

n

4(n) (k, _, ;) = i ki*i (3, _), (8)
i=0

n

f(n) (k, _, n) =i kifi (_' "_)' (9)

i=l

which we will cal_ respectively, the wave function and the scattering
amplitude in the nth approximation.
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We will assume that the series (3) and (4) for the functions for

'_ and f converge. This takes place if k is sufficiently small, k is

sufficiently large, and the operator V decreases sufficiently fast with

the increase of r. A rigorous examination of the convergence of such

series has been conducted so far only in the most simple cases (see, for

instance,Ref. 40).

We will assume now that the solution to the unexcited equation

(5) with its asymptotic form (7) is known to us in the case of all values

of the vector k = k_, and also for the related states (k2 2 = E < 0).n n

Then we are able to construct Green's function G (k; 3, 3') for

the operator V2 + k2 - VO, which satisfies the equation:

(V2 + k2 - V0) G (k; 3, r') : 5 (7 - _'). (I0)

The solution to this equation may be stated as follows:

C (k;7,r'):
CO

I! dk2;.(2_[)3 k 2" _-k,2 _0 (k', _, r) $0 (k', _, 7) d_ +

*0" t_'n' _') _0 (En' _) (11)+ k'E '
n n

where the internal integration is conducted with respect to all directions
of the unit vector _ and, d_ring the integration by k, the integral should

be considered as a contour integraLion in the complex plane k', and /53

should exclude the pole at the point k' = k.* Only with such a selection

of the integration method can we obtain a solution to the heterogenic

equation which, in the presence of large r_ contains only divergent waves.

The function of the related states t0 (En, _) satisfies the equations:

In the case when tbe energy operator H has only a discrete

spectrum, H_n = En_n, then Green's function will have the following form:

" * ') - the m-diverging
G (E; r, _') = _ Sn (_ *n (7)/(En E). When E = Era,

te_ of the sum is excluded. This requirement is analogous to selecting a

path during the integration with respect to k' in the formula (Ii).
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(v2 + En " V0) _0 (En' _) = 0. (12)

By utilizing Green's function we are able to tra_sfer the last term of

equation (i) to the right hand side and, considering this term as being

formally heterogenic, we can state the solution in the following form:

_r (_) : @0 (_) + k i G (_, r') V (_') _ (7') dT' (13)

We will solve the resulting integral equation with the method of

consecutive approximations, using the function 40 in the capacity of a

null approximation. We will thereby automatically obtain a series

resolution by k° up to kn, for the n-approximation.

.._hus,during solution of the integral equation the n-approximation

coincides with the wave function 9(n) in formula (5). As far as the n-

term of the series solution is concerned, we obtain the recurrent
fo_nula:

(7) = o_ G (7, r') V (_') _n-I (r') tiT'_n

(n= i, 2, • • .). (14)

We will now show how to obtain an expression for f (_, n) by
n

utilizing the variational principle. For this purpose we will examine
the functional (6.19) :

J (_2'_l ) --

k k 2
= gl (" 72) + _ _2 (v2 + - v0 - x v11 _1 d_, (151

! the stationarity of which was proven in Section 6. We will mention _4
that, durlng the calculation of the variation of this functional, we h_ve

} disregarded the integral 8_2 (V2+ k2 - V0 - XV) 8_id_ in formula (6.11).

This expression reduces to zero if either _I' _2 equals zero, which proves
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that J(_?, _i ) will yield an accurate value for the scattering amplitude
even in That case when only the accurate solution to equation (i) was

substituted instead of one of the functions _i or _2 _, In that case the

second function might be any given function; it is required only that

this function should have a proper asymptotic form (6.18).

We will substitute in functional (15), instead of _2' the accurate

solution _(_2' _) and, instead of '_i' we will substitute the solution

_!'0(71' 7). Then, by utilizing (5) we obtain:

f (_i' 71' - 5'2) : _0 (_z' - 72) -

kk ]" (72 ....- 4"_ 4 ,r) V (r)%0 (Ul'_) dT. (16)

Analogous correlations in which the scattering amplitude of t_ _,

phase is expressed by an integral which contains the accurate wave

function might be obtained for any given problem in collision theory.

These correlations are known as common integral identitie_ and are

broadly used in theory and in numerical calculations, in all ca.des the

integral identities are obtained immediately from the corresponding

variational principle using the same methods as in equation (16).

By substituting solution (_) in formula (16), we obtain*:

fn (_i' - _2 ) = - k j_ 4n.l (72, 7) V (7) 40 (71, 7) dT, (17)

f(n) (71, .72 ) : fo (gl' " _2) "

kk j" (n-l)(_2' -'"4-_ 4 _) V (_)40 (vi'7) aT. (18_

., .., --., -- _ .....

Henceforth, the functions under the integrals will not be provided

with the symbols I and 2 in this and the following sections; the function

on the right side will correspond to the value _ = u2, and the funutlon

on the left will correspond to the value 7 _ _I'
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We will now substitute in the functional (15), 4nstead of /55

_2, the function,2 ,(m) 17n)2' _,
-- j, and instead of _i' we will sub--

stitute the funct.ion91 = , (Ul' 3). Then, by util_.zingequations (5)
6"and ( _,we w_ll obtain

j (,(m), ,(n)) -_,

_,k_ (m) k2 (n)= f(n) (Vl, _ _2) + _ , _ (V2 + - V0 - NV) _ dT =

-' Nn+Ik I' (m) dT. (19)= f(n) (_l,.V2) 4_ o * V*n

In that case the expression obtained will be polynomial in relaLion to

of de_ree m + n+ i; the _rariations J of the integral _8,2 (V2+ k2 - V0 -

- NV) $_lTldZ,which were dropped during the calculation of the variation J,

will be on the order of Nm+n+2 and, thus:

Nn + Ik _ _(m) V,n dT; (20)f(m+n+l)(_I'72)= _n) (71,._2) 4_ J

fm+n+l (71' " _2) =

= = _ $m (72' 3) V (_" #n (Vl' _) aT. 621)

That same result can also be obtained directly, of course, hy utilizing
equations (6) and (17) and the condition:

_*m (71 7) (V2+k2' " V0) _n (72' 3) d_ =

i' k2
=_ _n (72' _) (v2+ " V0) _m (71' _) d_, (22)

m, n = i, 2) 5) " ' "

• ,_
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In this manner we can see that by knowing the function $ (72, 3) in the

th (31 thm approximation, and the function $ : 3) in the n approximation,

it is possible for us to obtain the expression for f in the approximation
m I.

Of particular _ignificance for numerical calculations is the first

_@proximation in the theory of excitations. In that case the expression

for the scattering amplitude has the following form

f(D . ) =
t

= fo (31 - '_2 ) - Xk F *0 (32' 3) V 90 (_1 3) d-, (23)' 4_ j

and it is necessary to know, for calculation _urposes, only two /56
unexcited wave functions for these values of v which are included in the

desired amplitude. Both of the following approximations in the formula

for the scattering amplitude _ncluded Green's function, the determination

of which in the case of the unexcited operator, V2 + k 2 - VO, is usually

a very complicated problem.

We will nm_ examine a very important specific case when the entire

potential energy operator may be considered as excited. In that ease

ik '.3
V0 = O, tO = e ' fO =:O, (24)

Green's function for the unexcited problem (the operator V2+ k2) can be

calculated in this obvious form

ieikl ' 'I
G (r, _') = 4_ ]_' - _"J " (25)

In the theory of excitation, the method of successive approximations fs

known as the born method. Particularly in the first and second approx-

imations, we obtain

fb(1) kk J' "ik_2"r ik_l'r= " 4-'_" e Ve d'r, (26)
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e v(_)_
(4x)

e

x V (r') e dTldT2. (27)

If the operator V(r) is spherically symmetrical, then in for_ala (26) the
avgu!ar integration can be easily carried out and we then have

r sin qrf i) = . k_ j qr V (r) r'"dr, (28)
0

-' (_2 I)where q = k - _ , and q = lq[- Finally, the accurate formula for

the scattering amplitude (16) will have the following form

£k!_ -_

f (V'l' - _2 ) = " "_x f _ (_2' ;) Ve dT. (29)

All form,,laeobtained here are for a three dimensional problem.SL_

However, if the operators VO and V are spherically symmetrical, then the
analogous considerations an6 formulas are suitable for a ore dimen_iu,_al
equation

d2 k2 _ e + _.1--+ - 2 - vo (r) - _ v (r)_ ,_(r) = O, (30)
_dr2 r i

/

o,(o) = o, , ..._in (kr - + Z_ ; (31)-. 2 /

if the _..olutionto the unexcited equation is known

dES+ k'_ . £ (Lr2+ l) . Vo (r)] *0 (r) = O, (32)

_0 (0)= O, _'0ffisin<kr Lx- _'" 2 + _oJ" (33)

1965024352-061



• 58

By utilizing the variational principle which was formulated in

Section 4, it is possible to repeat all considerat__ons of this section

for a one dime_ional pzoblem. The phase expression in the f_rst

approximation will h-..,ve,for instance, the foliowlng fnrm

CD

i](1) --1]0- k (_0 r) V#0 tr) dr. (34)
0 :

In the Born approximation

V0 = 0, _0 = O, :_0 =_ !_+I/2 (kr), (35)

where I° (z) are the Bessel fenctions. Then, in the first approximation _

oo

i) - " I +l/2
0

If the operator V (r) is a function, then we arrive at the common formul8

OO

-. xb = _ V (r) =_+1/2 (kr) r dr. (37)
0

We will mentioa that in collision theory tb_ basi_ formulae
for successive approximations and the theory of excitation have a much

simpler form than analogous formulae for related states. This is caused

by the fact tFat in the case of problems of a discrete spectrum the

heterogenic equation (H - E) _ = F has a solution only under the condition

of orthogonality of :he function F toward all solutions of the heterogenic

equation (H - E) $0 :=0. Therefore, when solving (by means of successive

approximations) a sy_:temwhich is analogous to the system in (5), we

should always conduc : orthogonalization of the right part (from which the

energy value of the related state in the following approximation is

obtained). In the T,roblem of related states this does not give a

possibility to construct a simple recurrent formula for Sn; which would

be analogous to formula (I_). In addition, contrary to the problem of a

discrete spectrum of the energy operator, it is not necessary to pay any i

spcclal atte_Lien to the case of degeneration An the collision theory,

if only one particle is being considered.
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All formulae which ware derived in this sectlon may also be genera-

lized for more complicated problem_ concerning the collisio, cf electrons

with atoms: elastic, inelastic, and exchange scattering. Due to the

complexity of these problems, a funda_..ental value must be assumed in the

Born method, which quite often permits carrying out calculations in the

first approximation to the end. In that case wave functions, which

"correspond to the init._a] and final state_ in the null approximation, are

substituted in the stationary functional, that is, _n the form of pro-

ducing a plan.; wave_ which characterizes the bombarding particle, on the
wav_ fu_lct: .._e" of the atom in the proper state.

If we should substitute in _he functional wave functions of the

null approximation, which were sy_uetrized beforehand in accordance with

the Pauli principle_ then we obtain the scattering amplitude ik_ the Born-

Oppenheimer approximation. The question on the applicability of the Born

method and the Born-Oppenheimer method to the problem of s zatterirg of

electrons by atoms is discussed in detail in Ref. 41.

The relation between the variational principle and the Born method

was pointed out in many. papers.. (Refs. 19,____la,_J°a_. ----._=formulae in the

theory of excitation for a phase were obtained somewhat differently in

the paper by Makinson and Turner (Ref. 28). In that same paper /59

expressions were obtained for a phase in the second approximation.

However, the formula obtained by them is not analogous to the standard

formula for energy in the second approximation and does not permit

generalization for more complicated cases.

§II. Variational Principles Based on the Integral

Equation for Wave Functions

If we take as a basis the integral equation for a wave function

(derived in the preceding section) then it i5 possible to construct

functionals which are stationary in relation to the variation of accurate

wave functions; that is, it is possible to obtain a new variational

principle. These functionals differ, essentially, from the Hulthen-Kohn

functional in Chapter I. Just as before, we will aT[amine equation (I0.i)

of the preceding section, assuming for si_rplicity k -I, which does not

limit the generality of our reasoning in any way. _n order to avoid

cumbersome formulae, we will introduce the following simplified definitions

for the integrals which contain the wave functions; Craen_s function

(I0.i0), and the excitation operator:

• • • • G v G , . • •

V (_n_l) G (rn-i _n ) V (rn) , (_, _n) dT ! d, (i)• " " ' __ _ " " * n'
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(_a' _) --J_ _cz (u2' r) V (_) "_-(Vl' r) dT.k (2)

In these definitions, the integral equation (10.13) will have the
following form

";= "_o+ G_,_ (3)

The scattering amplitude f in fo._-mula(10.16) will be as follows

f = f0 - _ (#' 90)" (4)

Thus, the desired value is (_, _0) , through which the scattering Z_

amplitudes can easily be expressed. If, in the capacity of _ null

apprexlmat_on, we use the plane waves and fC = 0 (the _ozn method), then

(#, 90) and f c_ncide in accuracy with the multiplier. /or the
th

scattering amplitude in tben approximation we obtain Ln these same
definitions

f(n) = f0 k . , Gn-I" _-_-_t(_o'%) + (_o'G_0)+ "'" + (_o _o3]' (_)

We will examine the functional

An (#, _°) = (_, GNU)= (6)

and we will conpute its variation, considering that: both functions are

accurate solutions to equation (3). We obtain

8An -- (_' Gn_) + (8#, GnU) --(_ " _0' Gn-I 5_) 4,

Gn-1 Gn-1
+ (5_, _ " _0 ) ..... ("_' " _'0 - ,_0 G ....

..... _'0Gn'l' _') + (_)_' '_ ~ _0 - G¢0 ..... Gn'l _0) • (7)

,,k

The excitation V (r) may, in this case, be considered as a wave

_unction during integration.
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The right part of th_s express .on is also a complete ceriation and
w_' find out in this manner that the functionals

Bn ; (_" Gr'_) - (_' _)+ (_'' "_0_ a_O + "'" + Gn-z _0) +

+ (_r0 + _0 G -t.... + _0 Gn-1, '_') ,,8)

are stationary in relation to the arbitrary variations of accurate wave
functions.

We "xili compute the stationary value of this functional

_n-I ,I.;
Bn (_' _) = (_' _ - %0 - G_O ..... u _0" - (9' '_)+

+ (_s,_s0 + G#O + -.. 4- Gn'l _0) + (_/0+ _'0G + "''

"'" 4" _0Gn'l' '_) = ('_0' _) + (*0' * - %0) +

+ (90' _ - 90 " G'_0) + "'" + (_0' _ " %0 " G_0 ....

.... Gn-2 _0 ) = n (_'0' 9) " (n - I) (90 , _0) -

- (n - 2) ('_0' G_0) ..... (90' Gn-2 _0)" (9)

Now, we will substitute, in this functienal, the function _0" We /61
obtain

Bn (#0' 90) = (_r0' %0 + G_0 + "'" + Gn _0 ) + (_0' 90 +

+ G_O + "'" + Gn-i 90) " (_0: 90) = (_' _0)(n+l) +

+ (+, #0 )(n) - (90, %0), (I0)

where the expression (_, _0)(n) in accordance with formulae (4) and (5)
th

defines the value (%, _0) in the n approximation of the excitation

theory. We will now constr,_ct the succession of the funcLionals

CI = BI, C 2 : B2 - BI, ... , Cn = Bn -.Bn.l, ... (Ii)
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It is o_.vious that these functionals are also stationary in relation to

the arbitrary variation-oE&cct:rate wave functions. By substituting the

obvious expre._sions for E in (ll),we obtain
n

Cn (_2' _I ) = (_2' Gn_l) " (_2' Gn-I _i ) +

_ + (_2' Gn-I _'0) + (_0' Gn-I _i )" (12)

By utilizing (9) and (i0); we obtain the stationary value C
n

P t {Cn} = Cn (_, _) = (_' _0 ) " ('_'0'_0) - (_0' G_0) .... _-

(_0 Gn-2 " (13).... , _[,0) = (,, ,0 ) _ (9, _,0)(n-l)

and the approximate value

Cn (_o' *o) = (* , _0) (n+l) _ (_,, _o) (n-l) . (14)

_us, we finally find out that the functionals

k Gn , Gn- i , Gn- i
Dn = f0 - 4-_ [(_2' _i ) " (_2 _! ) + (_2 _0) +

+ (:!'0'Gn-I _I ) + ('_0_ _0) + (_0' G'#0) + "'"

"'" + (_0' Gn'2 _0)] (15)

are stationary in relation to the variation of accurate wave functions

and have, in the capacity of a stationary value, an accurate /62

scattering amplitude. If we should substitute in this functional a wave

function of a null approximation, then we obtain a scattering amplitude in

the approximation (n + i).

An even more simple and symmetrical functional F is obtainedn

for the correction toward the scattering amplitude in the (n + I)

approximation
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= F (_2' _I) = k , Gn , Gn-! ,n - 4--_[(_2 _I) - (_2 _I' +

+ (_2' Gn-I 40) + (_0' Gn-! _i ) (40' Or -i :- _r.'] ;

fn+l = F (40 40); f . f(n) = St {Fn}. (16)

We will now prove that if in the _functional D we substitute the
n

function of p--approximation _(P) (I + G + ... + Gp) d/0 for the #unction

_i I and instead of _2 we substitute the function of the ]-appr_Kimation

_(q) = (I + G + ..- + Gq) 40 , then we obtai'n the scatter ln_ amplitude in

the p + q + n + I approximation. Act,'=lly,

Dn (_(P)' _(q)) = fo - _ (40' [(i + G + "-"

''' + Gp) (Gn - Gn-l) (I + G + .. F G') +

+ (i + G +-"+G p) Gn-I + Gu'l (I + G + ''' + Gq) +

+ (I 4. G + "'" + Gn'2)] _0). (17)

The expression within the square brackets can easily be converted intc

the following form

Gn-i FG?''__, - I Gq+l I Gp+! - 1 Gq+l - 1- I (G - i) G - i + G - 1 + G - i J+

Gn'l - i Gp+q+n+l - i = i + G + "'" + Gp+q+n.
+ G - I = G - I (18)

Thus

k t.,.
Dn (_r(P) _(q)) = fo " _ '_0 _ [1 + G + + Gp+q+n] 40)

= fo " _ (_(p+q+n) _0) = f(p+q+n+l) (19)
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- according to formula (10.18). This same result can be obtained

immediately from the variational principle, since during the computation

of the variation of the functional D we have dropped only that term whichn

¢_?.':ained the product of the variation _I and _. From this, in particular,
d

it can be assumed that the functional D (_ _i ) will give an accuraten 2' •

value for the scattering amplitude, if we substitute in it the accurate

solution _ only in place of one of the functions_2 , _, and the second

remains arbitrary. Then we obtain

k , Gn Gn-I Gn-I
f = fo " 4--f[(_ _ - (_' _) + (_''" %) + ' _

+ (_0 Gn'l _ + (_0 _0) + "'" J" ('@0 Gn'2 _0)] (20) i, , . , •

We will now mention the specifications which distinguish the
function D obtained here from the Hulthen-Kohn functional which wasn

explained in Chapter I.

First, the functionals D contain the Green function of the un-n

excited operator, and consequently their obvious form depends on how we

break up the complete energy operator into excited and unexcited parts.

If we assume that V0 = 0 and n = I, we obtain t_le Schwinger variation&l

principle (Refs. 15, 16, 27, &2) .

DI (_2' _i) = (4_)2" _2 (_) V (_) e[_ . _'i x

h f'

x V (r') @I (_') d7 dr' + [_ j _2 (_) V (_) _i (_) d7 -

ik_1._

f(_t,"_z) = st.rD1 (_2'_1)3. (211

i 1.;
If we substitute the values @I = e ' @2 = e in this

functional, then we obtain an expre,_sion for the amplitude in the second

Born approxlr:mtion (2.27) •
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-The second __mportant _'characteris tic of_'the investig&ted functions1 •

is contained, in the fact that the functions, Which are substitu£ed in : _-.

them, are not burdened by any particulaL limiting condltiotLs, contrary

to the Hulthen-Kohn functional_wbere :the functions had to contain at /64 _ !<,
infinity only plane and scattered waves. Here the sub-integral expression :_

also contains, as multipliers_ the functions (or oFerators) V of all 'i.

arguments by which the integration was conducted,-and thus the asymptotic_ _ _.

form of the wave functions is unimportant. _is makes it possible to use _ J.

particularly simPle test-functions in the variational calculations and - ":'_'

serves to simplify computation. = _:

Furthermore, xf the excxtatxon V xs a funct._.on,then durxng the . _ - .._!:calculation of D_ it-is not necessary to differentiate the test functionS. _,:- _:" _,_,_i_

Itis possible that .+his wilJ be a definite advantage if the test functions,_-;.)-//:I,"
are given in numerical form.and the calcul_ttion is conducted on computers. ,_'_:- .__2_ !

It should, however, :be ment_ored that even._the_,sxmplest functional .. '!

DI contains a dual integration-of an entire s_a'ce, arid the f_,uctional Dn . .. _

contains an n + i multiple i_tegr_tion. ,_"_..iscircumstance complicates " .,,

greatly the application of these functional.s in numerical calculations, i.:'.:._i_:._._:_::_
¢

We will estublish a relation between the functionals D and the . ' _

Kohn functional (6.171" t_ _ "" :_

J %' _l) = gl("_21+ _ ,_

-+ g2 (V2+ k2 - V0 V) gi dv' (221 _ .._::-.

First, we will present the f_mction gl (" _)' which is included in this " _.....

functional in the form of an-integral. If we uti!ize-C-reen's formul_ _, "

and transform the surface integral by the method examined in Section 6, _, _
then it is easy to obtain _ _,_'_

g

= fo(Ul'" _2) " gl("_)" 0 (2a) _,
L' _

%,
*The relation between the Schwlnger ,._riational principle (2i) and 4

.+.he :<ohn variational pr:_n,-iplewas established by Kohn (Ref. 16). '_ _:

• 1
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from which

gl(-72)= fo(71'-72)-4_j_o (Tz'_)(v2+ k2"

- VO) 91 - _I (V2+ k2 - V0) _0 (_' r)] dv =

k r - k2
ffifo (31' - 72) - _ J $0 (u2' r) (v2+ - Vo) _I dT. (24)

Thus, the functional (22) might be recorded in the fo-!owing form /__'5

J (_2' _i) = f0 (71' " _2 ) - _ _0 (_2' _) (V2+ k2

" VO) _i d7 - jr_2 (V2 + k2 - Vo - v) _I dT_. (25)_J

We will now consider the method of successive approximations,

•)bich is based on the integral equations (10.13) and (Ii.3), where in

the capacity of a function in the null approximation we will use the

arbitrary function _. Then, after n-integrations

_(n) = _0 + G'_0+ "'" + Gnu" (26)

We will notice that if _ is the accurate wave function %, then after any

given numLer of iterations we will again obtain the same function. We

will n,,w prove that by sub,_titutir the function _(n)in place of the

function _I' in the functional J, we have the functional Dn. Actually,

r k2
J _0 (V2+ - V0) ($0 + G'_0+ "'" + Gn-I _0 + Gn _ d7 -

- _ _2 (V2 + k2 - V0 " V) (_0 + G_0 + "'" + Gn-I _0 +

+ Gn,_) d7 = ( _0' _0 ) + (_0' G_O) + "'" + (_0-" Gn'2 #0) +

4 (#0' Gn'l _f) " (_2' *0 ) " (_2' G_0) ..... (_2' Gn'2 $0 ) "

" ('_2' On'l f0 + (_2' _iO) + (_2' G_O) + "' + (_2' on'l _0 ) +

+ (_2' on'_ ffi ('_2' on_ " (_2' on'l '_ + (_2' Gn'1%0 ) +
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+ (_0' Gn'l _ + (@0' _0) + (_'0' G_0) + "'" +

+ ('¢0' Gn-2 't'O)" (27)

Here the obvious equal "v=_ was utilized

f 92 (V2 + k2 - V0) Gn _ dT = ('_2' Gn'l '_" (28)

_q_us, we actually have

j (92, _(n)) = Dn (92' _" (29)

It is _ot difficult to obtain an analogous formula /66

j (_(m), _i) = Dm (_, 91). (30)

Actually,

[' (V2 + k 2
J '!_0 - VO) _I d_ -.! (_0 + _0G + "'" + _r0Gn-i +

+ _G5 (V2+ k2 - V0 - V) 91 d_ = ('_0+ _0G + "'"

•.. + ._0Gn'l + _Gn, _i ) - _ (_0G + ... + _0Gn'l +

+ _Gn) (V2 + k2 - VO) ['_0+ (_1 - ¢0)] d'r = (_0 + ¢0c + "'"

._0Gn-i n-2''" + + _Gn' 91) " (_0 + '_0G + "'' + _0G +

+ 9Gn'l' _I " _0) = (_0' _0 + G_'0 + "'" + Gn'2 _0) +

+ (_' Gngl ) " (_' Gn'l _I ) + (_0' Gn'l _l ) +

+ (_, Gn-I _.0). (31)
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It is also not difficult to derive the following formula

Dp (_m) , _n)) = Dp+m+n (_2' _'I)" (32)

_is formula contains formulas (29) and (30), if we ass_..e that

DO (_2' _I ) = J (@2' _I)" (33)

Thus, we have acquired a succession of functionals which possess

unique "group" properties (32). From among these only the Hulthen-Kohn

functional DO does not depend on the specific selection of an unexcited

operator. It can be seen from formula (32) that the functions _I and _2

in the functionals DI, D2, ... might have any given asymptotic form,

since the interation process itself secures a correct asymptotic form for
the function in the functional J.

The question arise& as to which of the functionals D yields the

better result if we conduct a direct variational calculation; that is,

if we search for a stationary value of the functional in a certain

collection of functions. This question is directly related to the problem

of convergence of the method of successive approximations. Generally

speaking, the iterative alogorithm converges for a broad class of /67

functions of the null approximation; however, cases when the first

iterations "degrade" the function and give a less accurate result for the

scattering amplitude are entirely possible. Thus, as a rule, by means of

a direct calculation the functional D will give a more accurate result
n

for the scattering amplitude the larger n is, if the class of the variated

functions remains unchanged. Within this boundary

lim Dn (_2' _I) = f (FI' - 32)' (34)

whereby the function _ is practically unburdened by any conditions.

However, in particular the case of small n, a reverse case is

entirely possible. It is well known that quite often the second approx-

imation of the Born method yields a poorer result for the scattering

amplitudes than the first approximation.

All results obtained here can be easily generalized to more

complicated problems of scattering of electrons by atoms, and are thus

m,.r_ _eneral.
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§12. Direct Method of Phase Calculatior Based on the

Variational Principle (Reference 43)

X_ne idea of appro_:imate calculations based on the variational

principle in collision theory is the same as in the case of problems of

a discrete spectrum. This idea is contained in the fact that we attempt

to satisfy the variational equations which were derived in the preceding

chapter, not throughout the entire space of variated functions, but of
a certain sub-space. During the selection of this sub-space (or class of

variating functions) we have in mind, first of all, the physical consid-

erations; that is,we strive for the functions to possess those properties
of the desired wave function which are known to us beforehand. In

addition, the selection of this class of functions is determined by

practical considerations of the simplicity of calculation.

We will examine the simplest one dimensional equation /68

+ k2 - _ (r)--0; (I)
"dr

(o)= o, (2)

% _ A sin (kr + _). (3)

According to the formulas in Sectior 4, the variation of. the functional

GO

'--d.:2
0

equals

51 = - A2kSl]. (5)

By substituting in the functional (4) the function

(Cl,c2, ..., cn,"_; r), (6)

i
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which satisfies the conditions of (2) and /_
_ at any given ci, _. The

normalizing coefficient A might, get_erally speaking, depend on the

parameters c. and _. By calculating the integral, we obtain a certainl

function of the parameters Cl, ... _ Cn, _.

i (Cl, c2, -.. , Cn, _)" (7)

_qaus, instead of a multitude of all functions which are continuous

together with the first derivative and which satisfy the conditions of

(2) and (3), we select a collection of functions (6) with arbitrary

values of their parameters c], ... , Cn, _. "Ehe infinite dimensional

Hilbert space functions are substituted with an (n + l)-_imensional space

function of the type (6).

By utilizing the variational principle (5),we may put do'_-n

_I bl _I _ 0; _ _ - A2k. (8)C_l = O, c_2 =0, "'" , bc n

In addition, generally speaking, there should be carried out the equation

I = O, (9)

which obviously follows from th,. stationarity of the functional in

relation to the variation of the normalizing multiplier A.

For the purpose of determining n + i unknown ci, c2, ... , Cn, _i/69

we have n + 2 equations. Obviously _t is impossible to generally satisfy

these equations. Here, an essential difference between the variational

methods and the discrete and solid spectra is apparent. In the case of

a discrete spectrum the functional _ _,_.._-_-_-_-==_minimum for any given sub-

multitude of noznnalized functions _nd by substitutiua iL, the integral of

the E func'_ion which depend_ on the parameters ci, t_a_e parameters were

identically determiDed. Formula (5) should be fulfilled in any sub-

multitude of functions which contains the _ccurate wave function _. How-

ever, the meiotic/ of functions determined by formula (6) never contained

in practice, and therefore the system of eq-stion_ (8) may not be carried

out for any of the functions in this sub-multitude.

In order to clarify the difference of what is obtained in the

discrete and solid spectra, it is necessary to mention that the variational
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D_. __o_ -_.-_ 1 _ / _'......._ _5j is not a stationarity ,;ond_tion (or minimum as is the case

in i d_screte spectrum) of a certain furctional. The transition to a

statJonarity condition, as we have seen in Section 4, is not identical

and is accompanied unavoidably by certain limitations, which are placed

on the variatlon of the asymptotic forrl of the wave function. As soon as

the t:arsition is completed, the value ¢.f the parameters c. and 71 arel

determined without difficulty; however, various means of _ransition are

appropriate to various approximate methods and give, generally _peaking,

various values for the parameters c. an.l _.
!

We will examine in detail the mcst simple, but extremely important

c=se when a linear combination of the n-functions is substituted in

functional

:I

= _ c._.. (i0)
L_ I l

i=l

Let us assume that

_i (0) = 0 (i = I, 2, ... , n); (ii)

_I _ sin kr, _2 _ cos kr;

when r -__ _j _ 0 (j = 3, 4, ''. , n).

Then the functional (7) will be quadratic in c.
I

n

I (_) = I !ijcicj' (12)

i,j=l

where ,_

I F_' F d2 k2 V___ r__+ . _j d,:-+lij 2 _ _i \.dr2
0

o
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By such a selection of a wave function the amplitude and phase are

determined by the coefficients Cl, c2. It is obvious that

cI = A cos _, c2 = A sin 7], (14)

A2,_ = c15c 2 c25c l-

Thus, the variational principle (5) can be as follows: ?

( 25 1_ 2) (15) :_81 = k c cI - c c .

We will mention that: the right hand part of this equation does not ?

represent a complete differential, where the non-eqaivalence of this

equatlon with respect to the stationarity condition follows°

Equation (8) for the determination of the coefficients Cl, ... , c n
has, in this case, the following .f.ozm(Ref. 39):

n n

__kc2 > _-_kcl_I 1.c. = ; = -z. j J 2 _ 12jcj 2 ;

j=l j--I
n
r--T

I..c 0 (i = 3, 4, , n) _'_j 13 J

j=l

We haw_ obtained a system n of homogeneous linear equations for

the determination of n unkn_ms, Cl, c2, ... , Cn. The condition for the

presence of non-zero solutious to this system is

k

IIi 112 - _ ''" lln

k

121+ _ [22 "'" T2n --0, (!7)

Inl In2 ''" Inn
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This condition, generally speaking, is not accomplished. 3y dropping /7__!1

one of the equations (16) we construct a solvable system and we arrive at

various formulations of the variational method. Acting in this manner we

satisfy the general varistiona] equation (5) in a certain (n - I) saace.

In the ¥ohn method (Ref. 16) the first of the equations cited here

is dropped, and accordingly the coefficient cI does not variate and we may

assume that cI = i. Then

c2 = tg _, _c I = 0, 81 = - k_c 2 = - k_ (tg _) (18)

(C_npare with formulas 4.22 and 4.23.)

111 the Hulthen method (Ref. II) the f_rst two equations in the

system (16) are dropped; however, the condition I = 0 is added. This

is obtained if each of the equations (16) is multJ!_!ied by c. and theni

combined. _e condition I = 0 is derived from the stationarity J

reg,lrding the varlational normalization of the multiplier° Such a

variation is possible during the selection of a function of the form (10)

and, accordingly, the condition I = 0 follows from equations k16). The

condition I = 0 is quadratic in relation to the coefficients cI and c2,

and. accordingly, we obtain two solutions for the relation c2/c I.

In princirle, other variational mt .:.,odsare also possible which

correspond to dropping one of the consec .tlve equations in system (16);

however, only the Hulthen-Kohn methods were in practical use until

recently. Therefore, we will concern ourselves in more detail with o
these methods.

I_i the Kohn method we have, for the determination of the coefficients

c2, ... , Cn the system of equations

k

121 + 122c 2 + 123c3 + ... + 12nCn = - _ ,

131 + 132c 2 + 133c 3 + .'. + 13nC n = 0, (19)

c = 0
Inl + In2C2 + In3C3 + "'" + Inn n '

By solving this system we find the approximate wave function _. Since the

coefficient ci is fixed, we are not able to vary the normalizing coefficient

freely, and consequently the value I(_ will be, generally speaking, /72
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different from zero. This makes it possible to "improve tilevalue for

tg "_, by making use of formula (18) or (4.23). Thus, we obtain an approx-

imate value for the tg I] with the Kohn method

1

tg _ = c2 + _ I (,). (20)

this folmula can be transformed by utilizing the system (19). Actually
n

I (_) = I ci (lilCl + Ii2c2 + "'" + linen) =

i=l

k

= cI .(lllCl+ I12c 2 + ... + llnC n). - c2 • _ =

k

= Iii + I12c 2 + ... + llnC n - _ c2. (21)

Then formula (20) may have the following form

tgn 111+[112+= c2 + I13c 3 + ... + llnC n
(22)

Thus, in order to find a phase with the Kohn method it is necessary

to first solve the system of equations (19) and then to substitute the

coefficier_ts obtained in the right hand part of formula (22). _e co-

efficient c2 by itself might give a considerably poorer value for tg _.

In one of the first numerical calcuiation_ by Huang (Ref. 20) on the

scattering of particles by a force field ...._La Yukawa potential Ae-_r/r
this circumstance was not taken into consideration and its result

differed from those of other calculations by a considerable degree. After

modification of the Huang results according to formula (22), which was

done by Hulthen and Olsson (Ref. 44), complete agreement with the preceding
calculations was obtained.

Hulthen method the condition I(_) = 0 was carried out before-In the

hands consequently, the value of the phase _, which was obtained from the
asymptotic form _,differed in magnitude from the°accurate value of the

phase by (g_)2, and within the frameworks of this approximation this value

cannot be defined more accurately From this standpoint the Hulthen /73
method is more "consistent" than the other methods. The results of

numeric'al calculations indicate that the Hulthen method also normally leads

to better results than the Kohn method.
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In order to establish a relation between the Hulthen and Kohn

methods we will return to the system of equations (16), and by utilizing

the last n - 2 equations, which should be carried out in both methods, we

will eliminate c3, c4, ... , Cn. Then we obtain a system of two equations

for cI and c2

k

Aij.r + AI = c_i 2c2 _ _'

k

A21c I + A22c 2 = - _ cI. (23)

By multiplying the first equation by Cl, the second by c2, and by

combini_ig them, we obtain the Hulthen equation

2 = 0 (24)
I = All C_ + 2A12CLC 2 + A22c2 •

From this we obtain with the Hulthen method for the desired value

c2
x - - tg

cI

2 _ AI . (25)i (_ AI 2 i_Al 2 IA22)
x - A22

With the Kohn method, we obtain analogously

c 2 = " A2--_ 21+ 7 '

1 1 2

_: = c 2 + _ I = c 2 + _ (A22 c 2 + 2A12c 2 + All) =

1 f_ k_ I _A _ k2" ,-A22\ AI2-i + _ IIA22"A_2+ i-; ' (26)
Q

It is obvio_s that the results obtained with the Hulthen and Kohn methods

should be relatively close if only the original functions _i are selected
satisfactorily.

Results obtained with both methods will coincide if only /74

equations (23) are common; that is, if the following equation is true
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k

All AI2 -

=0,

k

_21 + _ A22

2 k 2

AI2 - ALIA22 =_- , (27)

which obviously equals equation (17).

It can be easily seen that if we use the symbol -, in formula (25),

formulas (25) and (26) will actually coincide when we carry out the

conditions of (27). Thus_ during the calculation wi_h the Hulthen method

it is not neuessary (as was shown, for _ustance, in Refs. ii, 20, 21) to

compare the results obtained with the results of other approximate

calculations, in order to select the true root from two possible roots.

Only one symbol in formula (25) -- the minus symbol -- has any physical

sense. In addition, the condition (27) provides a sufficiently reliable

criterion for the quality of the selected wave function. _us, it can be

seeiL why, if only the function is selected satisfactorily, the Hulthen

method should not yield any complex values for the phase tangent.

Actually the sub-radical expression in thi._ case is clese to the value

k2/4, and thus it is positive.

In order to understand the formal nature of the secon:J solution in

the Hulthen method, we will mention that if condition (27) is carried out,

then the second ;adical will equal

1 / k'h

x'-  -A12+ j. (28)
A22

This same result will be obtained from formula (26), if w(........_,Idforma1!y

change in it k by -k, leaving the ¢c,efficients A.. without .-:y changes.
1.I

Returning to the original formulation:; of the variatirm_i [_ i.nciple, we

can see that the second radical from the p',a_e ta_g_- :.: obtained
from the formal attempts =o satisfy in ti-e area o[ the Junction (i0) the

variational equality

9

51 = - k (c25c I - ci_c2) = A'kS',q, (29)

which is obtained from the original variational prlncJ_le (15) by changing

the symbol in the right hand part.
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It is obvious, however, tnat the equality (29) makes no sense.

Actually the wave function is already s_ly determined from the

stationarity requirements of the functLonal I regarding the variations

which die ouL at infinity. It follows frum this fact that the result,

which was obtained in the case of 51 during the variation of the asymptotic

function, is obtained identicaJiy and can not be arbitrarily changed.

Consequently, equation (29) does not determine any functions in general.

If we solved the problem by using the Hulthen method, increasing regularly

the number of variated functions n, th_n the second radical (the s,aT_bol+

in tile formula 25) would either not converge at all toward a determined

limit, or this limit would essentially depend on the selection of succession

on the part of the function _i" Numerical calculat-_cns confirm this
assertion.

We will now investigate the question on the degree to whlch the

integral identity which, (as shown in Section ]0) is also derived from the

variational principle, should be carried out in the case of the obtained

approximate function. In the given simplest case this identity has the

following form*
oo

tg _ = _ , d2 + -
r2 V) sin kr dr =

0

O9

= - _ sin kr • V _"dr. t30)

0

We will assume that the function _I = sin kr. Such a ._election of the

function _i is most simple and practleal and is the most frequently used

method. We will substitute in formula k.O) in ._lace of the accurate /76

_ave function % its approximate expression (i0). Then we obtain
n

tg _ = 7 Ci _i _r 2"+ " ) _idr =
i=! 0

n

2I lli c r c2 (31)=i
i=l

it is ass_nned he:e that the accurate wave function _ ha', this

asymptotic lotto: _ _._in kr + tg _ • cos kr,
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Durin_ the derivation of this fu_mula equalities were utilized as

a result o£ formulae (Ii) and (13)

li = J _i \dr 2 + - _idr (i = 3, 4, ... , n);
0

119 = J g2 -- + - _I dr + - (32)
- dr _ 2 "

Formula (31) coincides with formula (22) and, thus, during the phase

calcu[ation with the Kohn method, the integral identity is automatically
carr_ ed out.

On the other hand, Jf in the left hand part cf for_,ula (31) we

substitute in place of tg Tf the coefficient c2, then we obtain the fir&t

equation of the system (16). Wrom this it can be assumed that, if during

a calculation with the Hulthen method, the integral identity is carried

out, the system of equations (16) is self consistent and the determinant

(17) equals zero; thus, the Hulthen method, as well as the Kohn method,

yields identical results. This proof of the integral identity is equi-

valent to a airect camparisen of the phase calculation resultz by the

Hulthen add Kotm methecs" therefore, it does not represent any indepen-

dent critezia which would confirm the accuracy of the variational
calculation.

The selection of variating t_,ctions plays an important role during

the calculation with the variational methods. At the present time in the

majority of variational calculations the wave functioD for scattering /77

was sought in the form

# = sin kr + u (r) c_s k c, (33)

where u(r) is a certain function which contains variating parameters

which, in turn, satisfj the condition u(O) = 0 and are finite wheD r -_ _.

It is obvious that lira u(r) = tg _. The variational principle can be

fozmulated directly for the function u/.r), as was done by I. E. T_umm

(Ref. 13). However, such a selection of a wave "function should not be

considered entirely satisfactory. V. A. Fok (Ref. 14) has proven that, in

the cage of an accurate wave function # = the fun,-tion u(r) will go to

infinity at the points r -- (n + 1/2) _. (n = 0, I, ...).
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It is clear that, when determining s_ch a function with a varia-

tional method, we cannot anticipate beforehand satisfactory results.*

The selection of a wave function in the formula (33) can be

examined from another standpoint, considering that a variational calcu-

lation at additional conditions which were placed on the wave functions
were conducted.

# n_ + 2-k_ = (-) (n = I, 2, .-.). (34)

Outside of the radius of action of the forces (r > a) this condition is

carried out rigorously; however, when r "_ a this condition has no basis
at all.

Nevertheless, the results of variational calculations, which were

conducted with the functions of the form (33) , agree in a number of cases

with the results of calculations which were conducted by other methods.

This circunlstance is possibly related to the fact that the local con-

ditions (34) which were placed on the function _ (the value of _ _ fixed

at certain values of r) has a comparatively slow effect on the result

of the variational calculation as opposed to the integral conditions (for

instance, the orthogonality toward wave functions of the basic state

during a variational calculation of the excited related states).

If we use the $chwinger variational principle in the capacity of

a foundation for calculations, then the corresponding direct method can

be easily formulate4 and the non-identical selection of a method, which

was discussed above, does not occur. Tnis is related to the fact that

the variation of the wave functions and the stationary expression for

a phase might be arbitrary and the asymptotic form of the variated

functions cannot be fixed. In connection with this a number of attempts

were made to apply the Schwinger method toward the solution of physical

problems (Refs. 42, 45, 46, 47). However, the results obtained are still

not sufficiently reliable and the presence of a double integration makes

the calculation quite cumbersome.

The direct method of the collision theory can not only be applied

for phase calculations, but also directly for calculations of the scat-

tering amplitude. There are available, at the present "t%me, several

calculations of such a type (Refs° 42, 45, 48); however, theiz accuracy

The indicate_ difficulty is treatcd in Refs. 14 and 19. The

wave function _ is determined in these works by two material (or one

complex) functioDs, for the determination of which the variational

principle was formulated.
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is insufficient and the problem of selection of such test functions

which would enable a sufficiently simple and reliable calcuiation remains

open. We will al_o mention that the _ar_ational calculation of the

scattering amplitude by a zero-angle yields the possibility of obtaining
the value of the complete effect of cross-section. %_is method is dis-

cussed in Refs. 42 and 46.

_13. The Variational Princi#le and the Method

of a Self-Adjusted }ield

_Le equations of a self-adjusted _ield for a wave function of a

multi-electron system in a combined state is derived most naturally from

the variational principle, as was shown in the tTorks by V. A. Fok (Ref. 9).

Since then_ similar equations for problems on the scattering of electrons

by an atom have been derived without application of the variational prin-

ciple until the present time. _e usual method for obtaining the_e

equations is contained in the fact that the wave function is presented/79
in the following form

k

(l)n e'
n

where _ is the wave function of the atom and F are the functions which
n n

characterize the bombarding and scattered electrons. In case of an ex-

change calculation this sum should properly be symmetrized. Furthermore,

from the entire sum there remains only one term (or several terms) which

correspond to the method of configuration _uperposition for a dlscrete

spectrum. If the expression obtained is substituted in the equatiog, it

is multiplied on the left hand side by the wave function of the atom and

integrated over the coordinates of the atomic electrons. In a very

simple case this derivative was given in Section i. However, such a

method for obtaining an equation for the function F requires additlemal

substantiation. It is not at all obvious beforehand why equation (I.i)

should be mu!tiplied by the wave function of the atom. Generally

speaking, we could h_ve multiplied this equation by any given function

of the coordinates of the bombarding and atomic electrons and, after

i_tegration over the coordinates of atomic electro_s, we would have

obtained various equations for the function F. If the expression (I_7)

for the wave function had been accurate, then all these equations would

have been satisfied. On the other hand, if expression (1.7) is approx-

imate then, generally s_eaking, it is not clear which of these equations
is the best and _n what sense.
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Therefore, during the derivation of approximate equations for the

wave furztions it is advantageous to do it on the basis of the variational

principle.* For the sake of simplicity we v-ill examine here only a ease

of electron scattering by hydrogen, disregarding, as usual, that pa_.t of

the solution which contains the functions cf the solid spectra. We will

stop at the characteristics which occur during the examination of prob-

lems of scattering of electrons by more complicated atoms.

The wave function of the hydrogen atum will be reeorde,i as L__

1 i ...._+ (rl, r2) -/_ #i[(rl) F i (r2) ! ":i (r2) Fi (rl) ] (2)
i

where _, satisfy'equations (8.2). We will consider the stationarityi

condition o_ the functional

I =_ [_i (rl) Fini (r2) + '_'i (r2) Fini (rl)-_]*
x

i

x L i ['_'j(rl) F°ut (72) i-_," (72) Fcut (71) I dTldTg, (3)- j J J _ _
3

where the 3yn,bo]s "out" aud "in" indicate that in the asymptotic form of

the function F. there might be present eniy plane or divergent waves, ori

convergent waves with the operator L as determined by equation (7.1).

In order to obtain the equations for _h_ function F we mightl

limit ourselves only to such variations of 5F. which do not uhanga thei

asymptotic form of the wave function. It was already indicated in

Section 8 that the functional I is stationary in relation to these
var iat ions.

We will introduce the following definitions

This circumstance was pointed out in the work by V. I. Ochkur

and Yu. V. Petrov (Ref. 49).
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Hi3 (_p) -- i _ * <_ ) L_It (_) dT I =

( 12 _2_+ 2 2 + 2E) + (_i) dT =
= I _i* (rl) + V22+ rI r2 r12 .•J _j I

22 ---2 3 dT, =
= 5ij (? + r2 + 2E - 2E + (- 2) [ _'i (rl) _j (rl)• ., r12 i

--'5. ('V 2 _ 2_ + V (72); (4)
zj k. 2 + r2+ k. ..

z / z 3

Kij (_I' r2) = _i* (rl) L%j (_2) =

: ¢i* _I ) [2_ - 2_. - zF.j- 2___ ,j (_2); (5)z r12

(r l) (r 1)_'i*
Vii (r2) (-2)I" = d_l" (6)

r12

(In formula (5) we have operated on the function %. o, eh= _~_
i ......... _LL hand /81

side with a part of the operator L.) The functional I may be as follows

I :_- [[ F in* (_) Hij (_) F(:u_ (r)dT ±_ I ]
i,j

r:"Fin* (_) (r, r') F°ut (_')d7 d7']. (7)Jj • Ki] j J

From the condition of stationarity of this functional in relation to the
in _out

arbitrary variations of the functions F. , F. ,we directly obtain a
1 j

system of equations for these functions. Therefore,F_ n and F?ut yield
the identical equations z 3

_Hij (_) Fj (7) • Kij (r')d7' = O.
r w)

Fi (8)

i j
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This system rmy be recorded as follow_ _

'_V2 + k'21 + 2r /'h Fi(7 ) + ?_ [Vi j (i)Fj (_1 ±

i

_Kij -_
_ " (7, r') F. (r')d'r'] .'-.0 _'_'• _ _I

3

If we consider, Jn the formula (I) and henceforth, that the

summarization is cenducteO in all states including the solid spectrum,

then the system obtalned will be accurate. On the other hand, if we

could state the final number of terms in the row then, as can be seen

from the conclusion,, the solution to the system (9) will yield a single

function _, which satisfies the variational principle in the class of the

function (I) with an arbitrary F.. In that sense the function obtained
i

will be optimum in its class•

We will examine an important specific case when we limit ourselves
th

to only one of tbe i ,-erms of the sum (_). Then, i_ the case of the

function F., we obtain the equation
I

_V2+ k.2+ 2_
l r j Fi (7) + V.. ([-')Fi (r',k Ii

=_Jl"Ki i (_, _') Fi (r') d_' = 0; (I0)

from the solution of which we obtain the wave function /82

y(i)+ (_i' 79)_ =-_2 "_'i|(rl)Fi (_2) + *i (r2) FI (rl) ]" (Ii)

This function satisfies the variational principle i_ the class of f_nc-

tions of type (ii) with an arbitrary F.. Such an approximate method,l

according to the analogy with problems of a discrete spertr_, is called

the Fok method or the method of a self-adjusted field with ar exchange.

In the case of large rI and r2 in the asymptotic solution of Junction (9),

only an elastically scattered wave will remain in addition to the incident

wave. Therefore, by considering only the wave function (II), _hich was

calculated by the Fok method, we can take into consideration or!y the

elastic collisions and disregard all inelastic processes. Howerer, in

spite of such seemingly rough approximation, the Fok method g_v£z good

results in many cases. I£ can be assume4 that from the conditio_ of the
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unitarity of the scattering matrix, that part of the elastic col![sions

in the complete effective cross section normally represents not less than

one half (Chapter III). This consideration might serve as an argumept in
favor of thc Fok method.

If we investigate the problem of scattering of electrons by more

complicmted atoms, then we sbould mention, first of all, that the at_nic

wave functions are known only approximately. This dilficulty was con-
sidered in Section 8 and we will not concern ourselves with it at this

point. From results obtained in Section 8 it is obvious that if the wave

function is represented in the form F_, where F is the function of bombard-

ing electrons and _ is the functlon of the atomic electron, then it is

impossible to calculate the effects of ehe bombarding electron and the

atomic polarization function _ cor._ecutively, since this function should,

in turn, satisfy the variational principle in a certain class of func-

tions, and consequently it is calculated independently of the "orm F.

In this manuer the method of a self-adjusted field for problems

of scattering possess a characteristic distinction from this same method

for related states. The bombarding electron does not affect the motion

of the atomic electrons within the framework of this approximation. This

characteristic facilitates the proper calculations, since instead of /83

solving the joint n + 1 system of equations, it remains for us only co

solve one equation for the function of the bombarding electron. The

calculation of a _ave function of the atom can be conducted independently

or by way of utilizing the already available results of approximate

calculations by these methods which are based in one way or another on

the variatiendl principle (for _ns,'ance,with the method of a self-

adju_tL_d field). The effect of a bombarding electron on atomic elec-

trons (that is, the polarization effect) can be calculated either _ith

the method of configuration superposition, or by introducing a clear

dependence of the wave function on the distance between the bombarding
and atomic e!ec_r_ns.

When we pass on to multi-electron problems the method of symmetri-

zetion of the coordinate wave of the function becomes essentially more

complicated. If S is the complete spln of the atom which is bombarded

by an electron, then the spin of che total system might equal either

S + 1/2, or S - 1/2. The electrons in an atom might be div:ded into two

groups (_n+ S and _n _ S) , whereby the wave function of the atom is anti-

symmetric in relation to the shift cf coordinates inside of each group.
In addition there should be carried out the Fok condition of cyclic

symmetry (Ref. _0). If the spin of the total system equals S + 1/2,

then the bombarding electron joins a large group of electrons, and

sy_metrization is conducted very simply. The second case, when the
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bombarding electron joiLis a smaller group, is more complicated. The

problems of symmetrization of a coordinate wave function were investigated

in detail in the work by G. F. Drukarev (Ref. 51).

We will discuss here only the final results for collisions with

he!imu, that is, for the case of three electrons. Here the spin of an atom

might equal either zero, in which case the wave function _I_is symmetrical:
= * " , or it mi_nt equal a u_iit, in which case the

_0 (rl' r2) _0 _r2' ri)
--) ._

coordinate function _I:is antisyunnetric: '_i (rl' r2) = " '_rl(72' 71)" In

the first case we can construct only one function with S = 1/2:

(71 _ r3) -_ (r2 r3) _ (71 -'YI/2 , r2, = F (rl) #0 ' - F (r2) _'0 , r3). (12_

In the second case the spin S might equal 1/2 and 3/2; /84

_I/2 = 2F (71) _rI (r2' 73) + F (72) *I (71' _3 ) +

--) ._

+ F (r3) _i (r2' rl)' (13)

_3/2 = F (71) %'I (r2' r3) + F (72) _i (73' rl) +

, )+ F (r3) tlrI (rl, . (14)

By substituting the obtained functions in the functional and by requiring

its stationarity, it is easy to obtain the proper integral differential

equations for the function F. After solving these equations it is

possible to obtain the apploximate wave function for the scattering of

the electron by an atom which is in a ground as well as excited state.

The numerical solution to the equation of the self-adjusted field

is possible only after a resolution of the function F by the partial

waves_ However, even after that, if we take into consideration the

exchange, it is still sufficiently dlfficult to solve the proper integral

differential equation.

A numerical calculation of this type was conducted by Morse and

Allis (Ref. 3) for the case of collisions of electrons with hydrogen

(_ = 0, I); however, in the case of S = 0 the accuracy of this ca!nula-

tion is obviously insufficient (Ref. 75). It is possible, however, to

take a dlfferent approach to this problem and calculate the function F

(or the correspol_ing partial waves) with the help of direct methods,
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that is,based directly on the functional (7) or analogous fun¢tions for

more complex problems. This type of calculation was recently conducted

for collisions of electrons with hydrogen (Refs. 21, 22), hydrogen type

ions (Ref. 23) and, finally, collisions with helium (Refs. 24, 25) for the

basic and primarily excited states.

§14. The Variational Principle and the Classification of L_

Approximate Methods for the Calculation
of Inelastic Collisions

We have mentioned already in the preceding section that the wave

functions which were calculated with the method of a self-adjusted field

contain only elastically scattered waves at large distances from the
scatterer.

However, we are still able to calculate the amplitude of inelastic

scattering with the help of these approximate functions, if we assume

that these +.unctions do not differ strongly from the accurate wave func-

tions; that is, that the inelastic scattering is sufficiently slow in

comparison with the elastic scatterings. In that case we may substitute

the approximate function of a self-adjusted field in the expression for

the amplitude of inelastic scattering, which is stationary in regard to
slow va_iatioLm of accurate wave functions (derived in Section 8). For

scattering on a hydrogen atom this stationary expression has the form

- =fij
I

"_ "(J L_= " _2

After substituting in this expression for the wave functions

_(i) 1 [ut -_ -_ ]YI =_22 F° (_1.) _i (r2) j_ F°ut (r2) _ (rl)
• i i '

(z)

_(J) =_9 LFFinj (rl) *j (r2) i Finj (r2) _,j (rl) ] ,

we can use formula (13.7) taking from it the term with a single wtlue of

i and J. The quantity fij is, in this case, equal to zero, and we obtain
the approximation
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k. in*

-_ -_ = __.Ir{ F. (r')Vij (_) F°ut (r) dr ±fij (Ul' - u2) 4_ _ j

± ,[_ Fin* (r) Kij (_, r')F Outi (r')dq dq"__, (3)

The acquired result coincides with the one obtained for the /86

inelastic scattering by the method of excitation. (See Mott and Massey,

Ref. i, p. 180.) That method is usually derived by _nalyzing a system

(13.9). If we keep in the expression for the wave function only two

terms, the i term and the j term, we obtain a system of two equatior_
for the functions F. and F.:

l j

(_ + ki2) F.I+ U.ll.Fi + 0_ Kii (_' _') Fi (_') dT' =

=- U..Fzjj _= _ Kij_ (7, _') Fj (_') dT'

(V2 + kj 2) F.j + U.jj.Fj+ [ Kjj (_, r') Fj (3') dT' =

= - UjiFi _ ,i Kji (3, r') Fj (_') dT'; (4)

2
U.. = V.. + -- :_...
13 iI r 13

This system of equations can be solved by the method of successive

approaches. For that we equate the right sides of first and second

equations to zero and find the solutions for the two equations fer the

zero approximation F._0#"" and F!0)"" which corresponds to the method of
l j

self-adjusted field, fiscussed in the preceding paragraph. Then we

substitute the obtained solution in the J'ight sides of both equations

and, solving them, obtain functions F tl#"". and F tl)"". in the first approx-
l j

imation. In artic]e _53) it was shown chat the amplitude of scattering

in function _. is determined by formula (3); that is, for the deter-
J

ruination of the asymptotic form of function F_lJt_. it is sufficient to

know only F!0) and F!0) . J
i j

It is obvious that formula (i) could also be utilized for refining

the expression for the amplitude of elastic scattering fii' if the

corresponding equation (13.10) is being solved by approximation so that

the functional j_ y_i)L_i) d_ 1 dT 2 is not equal to zero.
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_The formulae presented here could be readily rewritten for L8_7
spearate partial waves.

Thus, from the standpoint of the variational principle, we ar,_

reaching a distinct classifzcation of the approximate calculation method

for elastic and inelastic collisions, depending on the various functions

being substituted in the right side of the linear function (i).

In his review of calculations of collisions of sl_ electrors with

atoms, Massey (Ref. 52) gives a classification of approximate calculation

methods for inelastic collisions, based on dropping some terms of system

(4), taking full account of the others= and accounting o111y ip first

approximation for the benefit of some which are considered small. Table I

is given in that review. (We have somewhat modlfied tPe designations of

the methods.)

TABLE I

Considered Not Consider,_d
Dropped Small Small Designation of Method

UII,U22

KIi,KI2,

K22 UI2 "'- Born's

UII,U22

KII,K22 UI2,KI2 --- Born-Oppenheimer

KII_KI2 ,

K22 UI2 bit,U22 Excitation waves

KII ,K22 UI2 ,K]2 UII ,!122 Excitation waves with
symme trization

--- UI2,KI2 UII ,U22 Excitation waves with
symanetrization and

KI I 'K22 _x =hange

KII,KI2 , --- UII,UI2,U22 Strong bond

K22

....... , All Strong bond with exchange

and syn_netrization
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Examining the same methods from the variational standp,-_nt, we /88
obtain Table 2.

TABLE 2

Forms of Wawe F[,nctions to be Inserted in the

Me thod Func tional

i[<*._I

Born' s e _r (_2)

i_.r I i_.32

Born-Oppenheimer e ,_ (F2) ± e 4 (31)

Excitation waves F (31) "4 (r2)

Excitation wav__s F (r'l) _ (_2) • F (F2) _ (FI)
with symmetri-
zation

Excitation waves Fi (_i) _ (32) i F_ (_2) _ (_i)
with symmetri-
sation and

exchange

Strong bond FI (FI) 41 (r2) + F2 _rl) *2 (_2)

Strong bond with FI+ ({i) 41 (_2) + F2! (_i) 42 (_2)
svmmetriza tion

FI- (_2)41 (_i)• F2± (_2)42 C_l_

Here 4 equals the respective atomic wave functions, while functions

F , in turn, are determined from the conditions making the functional

stationary in the respective classes of the functions. _le clasqes are
determined from Table 3.
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TABLE 3

I
Function Class of Functions in W-nich the Functional

is S ta _1onary I

F _- (FI) '_"(F2) 1

F- _ (F 1) :!' (_'2) -2 _ (_.:2) _, (_1) I[

Fl'VZ _l (Fi)"Jl(_2)+ _2 (_l)!'2(_2) [

FI-' r2- _-i (_I) _'I (_2) + §2 (i:i) ':2 (72) =4 }1 (_2) #i (71) +
!

_2 (F2) _2 (_t) [
.-4-

i I

Here, { (5) equals arbitrary functions of the character necessary

for asymptotic behavior (i.e., having at large r the form of a plane /89

wave of given direction and cr,nvergent or divergent _pherical wave with

arbitrary amplitude, depending on the problem being solved _nd on where

the given function is being insert=d).

Thus, the variational principle, while not leading in this case

to new equations cr _ew methods, enables us co substantiate more

emphatically the old methods aL1d tc examine them from a new viewpoint.

Computations (by the method of excitation waves with consideration

of excha_,ge and symmetrization) of excitation by electronic impingement

of atoms of hydrggen (Ref. 22), helium (Ref. 25) aL,d of an ion He_+ (Ref.

23) are presently available. These computations contained the solutions

of equations of the self-adjusted field obtained with the help of direct

variational methcdg mentioned at the end of the preceding paragraph.

These comp_Jtations made it possible to explain the resonant
chazacter of behavior of the effective section near the threshold and

to obtain results in satisfactory agreement with experiments where

experimental data is available (excitation of helios).
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§15. Variational Computations of Elastic Collisions

of Electrons with Hydrogen

A detailed survey of variational computations of collisions be-

t-.zeenslow _lectrons and atoms, =,-swell as a comparison with other

computations, is to be found in a re_,iewing article by Massey (Ref. 52),

now being trans!eted into Russian, and in a review by G. F. Dr-kai-c:v

(Ref. 54).

We will concentrate hure on the computatior_ of elastic collisions

of electrons with hydrogen atoms carried out by Massey and Moiseiwitsch

(Ref. 21), i.e., on the simplest problem utilized throughout the book for

demonstrating the application of variational methods to the problem of

multi-body collision_, This problem is now the ,,nly one for which it was

possible to perform a variationa! computation with conslderation of

polarization; i.e., it was possible manifestly to introduce Jn the wave

f'mction the distance between electrons r12 and to step beyond the borders

of the self-adjustment method. The equation of self-adjusted f_eld /90

far s- and p-scatterings was numez,_'callv integrated in the paper of

Macdougal! (Ref. 55) without consideration of exchange, and in the r_aper

of Morse and Allis with consideration of exchange. In the latter case,

for the solvi_,g of the equations, use was made of the Bus;h differential

analyzer -- a mechanical calculator of the continuous action type. Only

the s-scattering was analyzed in the work of Massey and Moiseiwitsch; the
variable functions were selected in the forms:

1 -rI _sin kr 2 - e- cos kr2]

e L _q k (a + be r2) (i - r2)
(l)

kr 2

i

_2 -_ [_fl (rl' r2) ± 'fl (r2' rl)]' (2)

1 -rl rsin kr2

_f3 =_, e l' kr 2 +

- .- cos kr 2

4- [a + (b + crl2) e r2] (i - e r2) kr2 3f , (3)

I

_4 =_22 [_3 (rl' r2) + _3 (r2' rl)]" (4)

Here a, b, ¢ are variable parameters, a = tg _ determining the
phase of wave functions.
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The results of the various computations are presented in Fig. i.

Obviously the variational computations with func.tion Y1 should be com-

pared with the numerical solution of the Hartree equation, while the

variationa% computation with the function %'2 should be compared with

the numerical solution of the Fok equations.

The variational computations with function Y4 should, generally
speaking, farnish the most reliable results; however, owing to the

absence of experimental data, a comparison carl be made only with results

of Less precise computations.

On the chart (Fig. I) it is apparent that, within the scale of

the drawing, the computations with function Y coincide with those ob-

tained by the Hartree method, which reliably confirms the accuracy of

either computation. In the scale of the drawing, the computations with

the functions Y2' Y4 and by the Fok method for phase _" also coincide.

For phase _+ agreement between the various computations is cons id__rably

poorer (curves IV through VIII), even omitting the Morse and Al!is

ccmputation by Fok's method (curve VIII) whose inaccuracy for _ at small

energies is not established. The disagreement between resu] ts of /92

computations with the same _L,nctiou by Hulthen and Kohn (curves IV, V

an_ VI, VII) also indicates the unreliability of the results and the fact

that the choice of functions Y2' _'4 for _:bis case was unfortunate.

The circumstance of obtaining, at the same approximation, much

better results for _- than for _+ is _:nderrtendable. Indeed, the function

Y becomes zero at r12 = 0 and its behavior at small r12 is, consequently,

of little significance in a variational computation. However_ particu-

larly in that region, the behavior of the wave function becomes especially

complex. At large r12 the effect of polarization should be weak; the

wave function at the good approximation breaks up into products of single

electron functions; consequently, for function Y-, Fok's method should

give good results.

The computational results with function Yq present less interest;
as for Schroedinger's equation, the_e does not e_ist a solution which

would have the asymptotic form

sin (kr2 + _)

_0 (rl) kr 2 ' r2 _ = '•.~ (5)

0, rI _ .
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Fig. I. Various Phase Computations for the Elastic s-Scattering

of Electrons by Hydrogen Atoms

The wave number k is plotted in logarithmic scale to enable more

detailed presentation of phase's behavior at small k's.

I - Computation of phase _ by Hartree method; variational compu-

tation with function _I by the methods of Hulthen and Kohn; II - Cc_npu-

tation of phase _ by Fok's method; variational c_nputation wLth functions

_2' _4 by the methods of Hulthen and Kohn; III - Variational computation

of phase _ with function Y3 by methods of Hul_hen and Kohn; IV - Varia-

tional computation of phase _ with function _2 by Huithen's method; V -

Variational computation of phase _+ by Kohn's method; VI - Variational

cc_nputation of phase _+ with function _4 by Hulthen's method; VII - Vari-

ational computation of phase _+ with function _4 by Kohn's method; VIII -

Computation of phase _+ by Fok's method.

At k - 0 curve I tends to zero, while curves II through VIII tend

to the value _ = _.
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If we were to perform a variational computation in higher approximations,

adding to _3 arbitrary linear c__mbination_ of factions _I' "'" ' _n'

which diminish at large rI as well as at large r2, we should expect that

the thus obtained approximate wave functions would lead at n _ = to some

linear combination of _+ and _-. Such a linear combination could not

have the asymptotic form (5), as long as _+ # _'. It is possible, however,

to require that condition (5) bc satisfied at large r2_ while the co-

efficient at the respective term for large rI be minimal. It could be

easily seen that this requirement is fulfilled for the linear combination
_+

1__
(cos II ) (_+ - _-) and that the phase _ will be approaching/93

the limit

! (_+ _ _-)2

From Fig. I it can be seen that for _3 this condition is fulfilled,

approximately only, at k > 0.8.

It is also interesting to investigate the resul-ts obtained with

various approximations at k = O. Taking account of polarization ('_3' _4)

of exchange (_2' _4) _las the result t_t the value of phase _
or at

k = 0 becomes equal to _ (Fig. i), while the computation by Hartree method

and the variational computation with function _i gives T_ (0) = 0.

This result can be compared with the theorem proved by Levinson

(£ef. 56) for the scattering of a nucleus by a central field. By that
theorem the difference

-

is equal to the number of fixed s-states of the nucleus in that field (if

we omit the particular case when the discrete negative energy level be-

comes zero at _he limit and coincides with the boundary of the continuous

spectrum).

Levinson's theorem is fully applicable to the computation of

elastic scattering of an electron by hydrogen by Hartree's method. That

method, as is known, does not give the fixed condition for the negative

ion of hydrogen H and, correspondingly, _ (0) in Hartree's method be-
comes zero.
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Allowing for polarization [for instance, the variational compu o

-a(rl+r 2)

tation with the function e (I + _r12)] leads to the appearance

of the fixed state for H-. From Fig. i it is seen that the variational

computation for s-scattering with consideration of polarization (}'3)

accordingly leads to _(0) = _. It is easily demonstrated that taking

exchange into account also enables us to obtain the fixed state of H-.

For instance, the variational computation with function

-(_rI-_r2 -6_r2-_r1
'!r= e + e , (6)

gives the energy of the fixed state - 0.013. It is obvious that /94

this value will only improve if we solved Fok's equation derived from

the minimum requirement for the functional

i _["
_ -- dT 2E = 2 Ij ._L# d_ I ,

_'= _I (rl) _2 (r2) + _i (r2) _2 (rl)' (7)

on condition of normalization of ,Ij. The results of Morse and Al!is

computations are equivalent to the variational computation of s-scattering
with function

I "r2 -rl)(F (rl)e + F (r2)e , (8)

analogous to function (7). Correspondingly: in this approximation

_+ (0) = _. The same result is obtained at a variational computation

with function w2 in which symmetry is included in the simplest way and

which is analogous to function (6) for the discrete spectrum.

Thus, the comparison of variational c_nputations for the discrete

and continuous spectra of a system of two electrons in the field of a

proton shows that, if consideration of a certain effect leads to the

appearance of fixed state for the discrete spectrum, then consideration

of the same effect in a scattering problem will lead to the increase of

the value T;(0) by _.

This statement is not rigorous, as the theorem of Levinson is

derived only for scattering by a force-center. Its extension to the
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multi-body problem would be a matter of great int.=rest. 4e will note

that such an extension does not appear trivial, as for r_- the theorem in

its former form is not fulfilled. Indeed, all approximations yield for

(0) the value _; at the same time it may be stated with certainty, that

the fixed state of H- with antisymmetlical wave fuuction does not exist.

This can be explained qualitatively b'_ the fact that in Levinson's theorem

account must be taken, not only of permitted states, but also those for-

bidden by the Pauli p.'inciple. The same assumption has already found

expression in Swan's paper (Ref. 57).

A comparison of the Hulthen and Kohn method has proved that ___

the Hulthen method yields a somewhat better result for a phase; however,

as shown in Section 12, a noticeable diversion between both methods points

toward the disagreement of the original system of equations; therefore, the
results cease to be reliable. A check of the Hulthen method calcalations

has bee_ conducted with the help of an integral identity for the functions

_i w It i= pointed out in Section 12 that in the selected function _,' "2 ° I

the integral identity is equivalent to the first equation of the system

(12.16), and that solving of this equation indicates only the coincidence
of the results of the Hulthen and Kohn methods.

We will also mention that the assertion by blassey and Moiseiwitsch

(Ref. 21, p. 488) is not true that there is no integral identity for the

general wave function with consideration of polarization. From the re-

suits of Section 12 it can be seen that the integral identity is obtained

automatically from the variational principle by means of substituting in

the functional the functions of null approximation instead of the function

_i (the Born-Oppenheimer method); and instead of the function _2' sub-

etitute the accurate function. In that case,we will obta._n for the s-

scattering

_i" sin kr 2
tg _+ = 4-_k _-L_ 0 (rl) kr2 dT1 d_ 2 =

I J_ yi _2 2 _' dTld_2
= _-_ (rl' r2' r12) ,_r 2 rl_ %0 (_I) sin kr 2 r2 . (9)

i -r

Here _ =_ e , and the function _,i is an accurate solution to

the equation L_ % = 0 and has the same asyanptotic form as the function in

equations (2) and (4). If tbe energy of the electrons is sufficient to

excite an atom, tl:en sphelical waves, which correspond to the inelastic

scattering, will also appear in the asymptotic fo_m of the function _'_,

and therefore, the .:unction _± is not essential. In that case it is /96

eaay to obtaln am idantity [which is analogous to (9)] directly for the

scattering amplitude of the spherical wave.
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Variational calculations fo_ collisions of electrons with hydrogen

atoms were also conducted with the Schwinger method (Refs. 42, 45, 46);

however, the results differ from those of _ssey and Moiseiwitsch results,

and obviously are less reliable.
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CHAPTER III

THE SYMMETRY OF FUNCTIONALS, THE PRINCIPLE OF SEPARATE EQUILIBRIUM,
THE VNITARITY OF I]{E SCATTERING OPERATOR

§16. Symmetry of Functionals in the Hulthen
and Kohn Methods

The operators being considered in quantum mechanics are, as a rule,

self conjugated. This means that in the case of a self conjugated

operator, the following equation should be evaluated

_i_",2 aT = I 42 (L_I)* aT (I)

for any given two functions '1 and '_2which satisfy the specified con-
ditions. It is obvious that _his determination makes sense if there are

given the apparent form of the operator as well as the multitude of

functions in relation to which this operator is self conjugated. The

operator H - E, which is being considered in the variational princlples

by Hulthen and Kohn, is self conjugated for functions which are twice

differentiated and integrated to a square. However, for these functions

which we have substituted in the functional I (see, for instance, 6.17)

and which cannot be integrated to a square, the equality

I (_2' @I ) = i (@I' @2 )' (2)

can_ generally speaking, not be evaluated. For instance, we have seen/98

during the deriviation of the variational principle by Kohn that the
variance

I (YI' 5_2) - I (5_2, YI ) = _ (YIV25_2 - 5_2V2YI) d7 (3)

does not convert into 0 since, after utilizing the Green formula, the

surface integral has the final value within its boundaries.

As a result of an asymmetry the variation of the functional in the

Kohn principle depends only on the variation of the function _I' that is

on 5_i, and it does not depend on 5_2. This result can also be obtained

iD the Hulthen principle, if we apply, in the capacity of an original

functional, a bilineal functional
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= [' f" d2 k2

I (_2' _i ) J _2 k,d_ + -V)_2 dr, (4)
0

where

_i (0) = 0 __i _ A sin (kr + "_i) (i = 1,2) (5)' i " '

In the case when the functions gl = _I and _2 = _2 s" afy the Schroedinger

equation= the functional converts into 0 and, obviou _y, it does not

depend on the variation of the function 32 . The variation of _i yields
the previous formula after integration by parts

_I ('2' *i ) = -AIA2kSql' (6)

where 8_I are the phase variations of the function '1"

Thus, the functions _'I and Y^ are included unequally in the varia-
tional principles by Hulthen and Ko_n.

If we should substitute, in place of the functions _I and '_2' a

linear combination of certain n of a given functic_ v. (r)
l

_i =__ civi(r); '_2 =_c"vi(r);L_i

vi(0 ) = 0, i = I, 2, '.. , n;

vj(r) -_ 0 when r - =. j --3, 4, ''' , n;

vl(r) _ sin kr, v2(r) _ cos kr, (7)

then the functional I (_2' _i ) will be put down in a bilinear form /99

n

•- = _ lijc' = k2- icj, lij vi + - v. dr. (8)

i,j=l 0
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As a result of the operators non-self conjugation the condition

lij = lji, (9)

is generally speaking not fulfilled. In the given case only

121 - 112 = k, (I0)

and the remaining coefficients Io. are sy_netric.
xj

The formula (6) may be put down in form analogous to (12.15),

51 = k (c_5c I - c{5c2). (11)

It is easily conceivable that the system of equations derived in this

case for the coefficients c.,i c_, are identical and coincide with the

system of equations (12.16). Thus, in the final calculation the symmetry

in this case is preserved. This result can be easily obtained also during
a more general method of selection cf functions.

It is obvious generally that the requirement of self conjugation

on the part of the operator H - E or the requirement (2) on the part of

the symmetry of the functional I (99, 91) should place determined limi-

tations on the functions 91 and 9p,_which are substituted in the func-
tional. As we will observe later7 these limitations are closely related

to the principle of separate equilibrium in quantum mechanics aod also

to the unitarity of the scattering operator.

§17. Passage of a Particle Through a Potential Barrier

and the Symmetry of the Variational Functional

We will consider a simple one dimensional problem on the passage

of a particle through a potential barrier. The Schroedinger equation

has the following form in this case:

+ - v (x) ,!r(x)=o. (I)

We will assume tbat V (x) is limited and that it decreases

rapidly (faster tban i/x 2) when Ixl _ _. The region located to the left

of the potential barrier will be defined by index I, aad the region to

the right will be defined by index 2.
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We will consider the flux of particles wbich fall to the left

(from region I) on the potential barrier. The wave function in this case

will have the following asymptotic form

ikx -ikx (2)
_I I _ e + alle , 41 I _ al2eikx
X_ - _ X_+ _

It is obvious that the functio_ 91" will also be the solution to

the equation. It is also possible to consider the flux of particles which

fall on the potential barrier to the right (from region 2). We will

define the wave function of this problem as _Ir2.

The asymptotic form of the wave functions _i' 42' _I*' '2" is
illustrated in Table 4.

TABLE 4

Region i, x _ - _ Region 2, x _ =

ikx -ikx ikx

*I e + all e a12 e

* -ikx * ikx * -ikx

_f2 e + all e a12 e
I

-ikx -ik_ ikx

_, a21 e e + a22 e

* * ikx ikx * -ikx

!r2 a21 e e + a22 e

The square of the modulus of coefficients of £ransition a..
z]

determines the transition probability of particles from the region i to

the region j.

The variational principle for this problem might be obtained from
the consideration of the functional

-- I _2 d<d_2+ k2 " V_ _i dx, (3)
I ) J .,

- _ i

}
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where _I' _2 have the following asymptotic form /I01

ikx -ikx
_ a.e + b.e (4)

with ce.tain arbitrary coefficients a, b, which differ far various

functions and regions.

By placing specified limitations on the aspmptotic behavior of the

functioes _I and _2' we can obtain a stationary expression for the tran-

sition coefficients aik.

We will explain which effect can be obtained from the requirement

of symmetry of the functional in regard to the dicplacement of the

functional _!: _2

I (@I' @2 ) = I (_2 _1 )' (5)

i: is obvious that this _equirement is fulfilled for the sake of accurate

solutions to the Schroedinger equation, since in that cask both parts of

the equation convert into O. We have

i ) " i (92, ) =
+_ +_,,

= ,F (J_1_2 '' " _1" _2 ) dx = (J_l_ 2' - _1'_2 ) i = O. (6)
-- CO . O0

If we should substitute now in place of the function _i' _2 the
W *

functions $1' _1 ' %2' %2 ' then we obtain a number of correlations

between the coefficients a...
1j

Of course, these correlations might be obtained also in a simpler

way, _ince from the fou- solutions to _1' _1 ' %2' and %2 only two

represent linear independencies. Therefore, the functions _2 and _2

might be obtained as linear com_ivations of the function %1 and $I* and,

respectively, the coefficients a21 and a22 might be expressed by all and

al2-

However, the method applied here leads to the same result and

_llows us to derive a generalizatiou for more complicated problems in
_he theory of collisions.
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Equation (_) also follcws direc.'ly from the fact thmt the Vrensky

denominatoc does not depend on x for tw; so!utions to eo.,ation (I).

By comblning four equatiol_s in pair:_ we obtain six possible /102

conditions o£ syi:_metry:

I) I (%'1%.! _) = I ("I* 2) I ('!'2', , ,i) , ,':2_'_: I (%'2*' _2)'

= -!rl) 4) ) (_I*' '_2*) = i (_2_ ' _""i )' (7)3) I ('_'i' £'2 ) ('It2' ' ' "

•

* 'd,,),_ 6; I ('Jl ' 62 ) : I (',.),_ _,i*).5) I (_l' '_r2_ = I (%'2 "'

It is obvio":_ that ti,e third and fourth as well as the fifth and sixth

coL:.ditions _f symmetry are equivalent.

By qubst_tuting in furmula (6) the asymptotic form of the function,
we obtain from the first and second c,>ndit..'onsthe equation

,2 12 = i._alli + la12

la2112 + ia22 !2 : i. (8)

from the third and fourth cc_ditions, we have

a12 = a21. (9)

Finally, from the fifth and sixth conditions we obtain

alla21 + a12a22 = 0. (I0)

The equations (8) expre_._._.the law of current sta,_iii_y for' states

whicP are characterized by the wave fun=tions _'I and _2" From equation

(9) it follows that the probabilities are ident.!cal that the particles

will pass through a potential bad'tier frown left t._right and from right

to left; that is, there follows the ;.-e,_ezsibilityprinciple o:" the

principle of separate equilibrium for the given probi_.m. I_ follows,

from this equation, that the phases of complex transition -_oeffici_:nts

a12 and azl are equal in regard to eaub other° Equation (10) does not

make sach physical sense. This equation combines the phases o[ the co-

efficients all, a12, and a22.

m ....... I I I I
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Equations (8), (9), and (I0) express the conaition of __03

symmetry and the unitarity of the matrix

S = Iall a121 . (Ii)

\a2! a22/

We will consider somewhat more in detail the sense of this matr__x.

Let us assume that, at the starting moment, we ]lad in region I a

;rave pocket, which wa.; removed at some distance from the potential

barrier, and which is traveling toward this barrier. Then, after a

scattering, we obtain uwo wave pockets with determined phases and ampli-

tudes which travel to the right and to the left from the potential barrier.

Such a condition is obt_'ined during the motion of the wave pocket to the

right of region 2. We a,'sume, thereby, that the wave pocket is so wide

that it cai" be considered as being "monochromatic", an4 we maj therefore

disregard any events which are related to spreading.

It is possible to construct a scattering operator (Ref. 27), which

transforms the wave function before scattering into a wave function after

c,cattering. The wave functfon of a particle before and after scattering

mzght be characterized in the given case by complex wave amplitudes,
ikx -ikx

which travel to the right an& to the left: % _ cle + c2e

In such a sense the above considered matrix will actually be the

_'catterit.K operator The scattering operator determines fully "the

.=tattering" properties of the potential barrier.

Thus, _,e can see that the problem on the symmetry of the functional

I (@2' _'Jl) ' in relation to the displacement of the functionJ _/I' @2 in the

given case, is clzsely related to the principle of reversibility or the

separate equilibrium and also to the unitarity of the scatteri_.g operator.

We will explain further that all these considerations might be broadened

to include more general problems in the collision theory.

_'18. On One Identity for the Scattering Amplitude of Particles /104
by a Central Field

The solution to the problem on scattering of a flux of particles

by a central field V(r) leads to the following expression for the

scattering amplitude:

Im 'I
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oe

i _ 2i_

f (7 • n) - 2i L (2_ * I) (e " - I) e_ (_ • n) =

cO

1 c

- 2" ___> (2_ + 1) b P£ (_ _.). (I)

g=O

It is obvious from this formula that the scattering amplitude

should not be selected in an arbitrary manner, i.e., not for all func-

tions f('_ n) is it possible to find such a pote. ial V(r), for _hich

f would have been the scattering mnplitude.

l%:e amplitudes of the convergent and divergent waves should equal

each other for every term in the resolutions (4.3) of the wave function

_'. It fol_'ows from this :requirement that the phases _£ should be

material, and thus the coefficients of the resolution b£ of the function

f are not arb2 trary. The,,;ecoefficients should satisfy the correlation

2
i_£ . . .

ba.' -+ 1 = e , (b£ + 1) (b£ + 1) = 1, b£b£ + b£ + b£ = O. (2)

We will multiply ti:=_ last ot these equations by (2£ + 1) P£ (_ • "_') and

we will summarize th's by all _. Then
_o

b£b_ (2£ + 1) P_, (v • _') +

£=0

+ >. (bg + l:__) (29.+ I) eg (_ 5') = 0, (3)

£=0

Oo

._ b£b_ (2,'+ I) P£ (_ • _') +

_=0

+ 2i [f (I-)'_') - f* (_' • _') ] = O. :.4)

Later we will form the integral

[ f* (v" • n) f (_ • n) d_, (5)
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where the integration is conducted in all directions of the unit
vector n. By utilizing (I), we obtain

f (_' • n) f (_ n) de =

OD

= 14_ (2_ + l)2b*_b .Ji'P_ ('7 • n) P_ (3' n) d_,. (6)

_=0

The integral can be easily calc-lat=d if we utilize the theorem of

addition (9.4). We obtain
co

, (7' n) f (7 n) d_0 = [_ (2_,+ I) bE b£Pg (_ • _'). (7)

By substituting this equation in the fo_.'mula(4), we finally have

[ 1 .14_ f* (_' " _) f (_ " _) de = _ If (_ _$') - f (_' _)] _-

= Im [f(_ • "_')]. (8)

This identity should be carried out at any given orientation of the

unit vectors _, _'. In a specific case when _ = v',we obtain

1 _ -. a
Im f (3 • _) -4_ U If (,o • _ 12 d_o =- (9)

4_k 2 '

where _ is the full effective cross-section.

Thus, the imaginary part of the amplitude of scattering at a 0 angle

is proportional to the full effective cross-section. For a differentially

effective cross-section, we might herefrom obtain the inequality

k2o 2
lira _ (9) a -- (I0)
_0 16_ 2 '

where e is the angle between the vectors _, _'; that is, the inclination

angle.

As we will see further, formulae (8), (9), and (I0) might be /106

generalized also to more complicated problems in the theory of collisions.
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Equation (8) for the given problem is analogous to the equations (_ and

(i0) of the preceding section and is also related to the unitarity of

the scattering operator.

We will now clarify whether formula (8) for scattering amplitude f
(calculated by Born's method_ w_ll be c_rried out. In that case f(v n)

is clearly expressed through the potential V(r) (I0.2_

f (_ _) = - k J V (r) sin qr r2 dr;qr

q = 2k sin _ ; _ n = cos _. (II)

We can see that the scattering amplitude in this approximation i3

substantial, and thus the right part of the formula (8) converts into O.

In the meantime, the left part of the formula _8) is known to be different

from 0, for instance when f = O.

However, it is essential in Born's method that the scattering

amplitude be low_ f(e) < I. From this, it follows that the left part of

formula (8) is cf the second order of smallness; then, during its calcu-

lation with the Born method, the terms of the second order of smallness

in its right part are dropped as in the case of amplitude f. Thus, at

large values of k, the imaginary part of the scattering amplitude f is

much less substantial and a check of formula (8) can be conducted only

through the utilization of the formula of the second approximation in the
Born method.

We will mer_tion that the principle of separate equilibrium, which

was expressed in _he precedi_g section by formula (9), is carried out

here in a trivial manmer, since from the spherical symmetry of the problem

it followed directly that f (_, _') depends only on the angle between the

_' and consequentlyvectors _,

f = f - (12)

that is, the probability of scattering of particles frcm the direction/107

toward the direction _' and fr_n the direction -v' io the H!;'_ction

of -_ is reciprocally equal.
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§19. General Problem on Scattering by a Potential Field

and the Symmetry of a Functional

In the case of scattering of particles by a field which does not

have a spherical symmetry, the scatterin_ amplitude f(l;, n) depends on
the orientation of both unit vector:; _, n and not only on the angle between
them,

We wili consider the functional

I (_2' _i) = J _2 (%72+ k2 - V) _I tiT, (1)

which is the original functional for the deriviation of the Kohn variational

principle. This functional has a determined value for the functions _I'

_2' which have in turn a common asymptotic form

ikvT.r ikr
1 e

_i _ e + F.z (n) _ . (2)

The YI and _2 functional converts into 0 for accuraze solutions to the

Schroedinger equation.

As was already metnioned, the functional (£ is,g=ner_11y speaking,

non-symmetric in regard to the displacement of the funccJ_r_ _2_

Analogously to the way that this was done in Section 2, we ecquire the

symmetry of the function

I (_1' _2) = I (@2' _XI)' (3)

and we will clarify which cenditions should be placed on the function so

that these requirements would be fulfilled.

Equation (3) may be put down in the following form

_ (_iV2_2 - _2V2_i ) (IT = 0, (4)

or, by utilizing the Green formula

lim _[ (_i _r _2 - _2 _r _dS = O. (5)
r=R
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In this case the integration is conducted by the sphere of the

radius R. We may thereby utilize the asymptotic form (2) of the functions

_i and _2"

We will lay out these asymp _tic expressions into a row by spheri-
cal functions

co

T r _ (kr) P (_, n) +_i _ _(2_ + ]) ^I 2kr I_,+I/2 _ x

_=0

ikr.

,(i) (_) e!
+ _ kr j (6)

Here y(i) are certain spherical functions of the order _, which are
'

obtained during the solution into a row of functions FI, F2,*
oo

(i) (_) (7)
F i =iY_ •

_=0

If we should substitute solution (6) in formula (5), then in

result of the orthogonality of the spherical functions we will have a

simple sum instead of a dual sum under the integral.

We will consider the _, term of this sum; thereby, instead of the

Be_sel function I%+i/2 , we will substitute its asymptotic form. We
have

eikr_$20+____I [eikr ikr] y(1) (_) ____ x
L-2ikr - (-)_e- P_ (_I n) + £ kr

eikr -.x _2_t2r+ i [eikr + (-)_e "ikr] P (72 n) + ikY 2) (_) -'_-rI. "

_2__+ ] [eikr _e-ikr y_2) eikr_" L 2ikr - (') ] P_ (_2 " _) + (n) kr-----Jx

i

*It is obvious that Y_ are not standardized and
generallyare

speaking linear combinations of auto-normalized spherical functions Y_m"
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• eikr

x ;_2_2r+ ] [eikr " ('-)£e-ikr] Pf, (_I n) + ikY (I)_ (n) --_--r[_ =

= - _ (-)%[P#_ (_I _) y(2) (_)
r2 _

- P£ (_2 _) y(1) (n) ]. (8)

It is possible in integration to utilize once again the addition
theorem

r Y (_) P (7 n) d_- 4_
0 '6 _ 2£ + I Y£ (_)" (9)

In such a form the theorem is applicable for any given spherical function

on the order of '6. After integration, we obtain

c_ o _

v- -. ') , , ;_.(2)) (.)'6_i)(_2)=_ t-__ (_i), (i0)
'6=0 ,_=0

oo OO

,6=0 '6=0

since the constancy of the function Y'6 = (-)'6.

Thus,

F1 (- _2 ) = F 2 (-- '$1 ) . (12)

Now if we substitute, in place of the functions _i' _2' the

accurate solutions to the Schroedinger equation _I' Y2 with the scatter-

-_ f(_2ing _mplitudes f(_l' _)' ' _)' we will obtain a formulation of the

separate equilibrium principle for the given problem

f (_'1' " _'2) = f (_2' - _1)" (13)

I

1965024352-114



III

We will consider the requirement

I (_I ' _2 ) = I (_2' _i )' (14)

which obviously should also be fulfilled in the case of the accurate

wave functions _I' 72" By acting precisely in the smne manner, we /II0

come to an analogous expression for the _ term in the surface integral

-ikr.

__ [e-ikr _e ikr _ (n) _r _ xL- 2ikr - (-) ] P% (71 n) + Y I)* -, e

eikrl

i2_ + 1 [eikr %e ikr (72 • _) + ikY (2) (_) --_ _x L 2r + (-) ] P_ _ kr J

_ 7_ [eikr -_
2ikr - (-)_e-ikr] P% (u2 n) + y(2)%(_) ____r}xeikr

{ ! (71 _ _ e-ikrq
2 + I [_e-ikr . (_)%eikr] e • n) - Y i)* (n) --- =

x 2r _ kr 5

= _ 2_ + i p (_i " _) y(2) (n) + _ P_ (_2 _) y(1)* (_) +
kr2 % kr 2

+ 2___!iy_l)* (_) _2) (_) (15)
kr 2

By utilizing again the addition theorem and considering that
OO

%=0

we obtain the formula

4!_ [FI* (_i) ] + 2i [ *k (_2) " F2 _- FI (_) F2 (_) dw--0. (17)
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For an accurate scattering amplitude,_Te obtain herefrcm

I -. * .... i JF * -' C2,u2-_ [f (72' Vl) - f (Vl' v2)] = _ f (:_I' _) f n) dw. (181

Thus, we have acquired an identical identity for scattering ampli-

tude as we did in Section 3. In this case the identity _as derived at

more general assumptions, since the potential is, Eenerally speaking,

not considered to be spherically symmetrical.

§20. The Symmetry of the Interaction Operator and of the /IIi

Scattering Amplitude. The Scattering Matrix. The

Variational Principle Related to the

Correlation of Unitarity

It was actually ass,mmed duringothe deriviation of the basic

formulas in the preceding section that the operator of interaction V is

substantial and self conjugated.

If these conditions are not fulfilled, then the problem on the

scattering of particles, in which the interaction with the scatterer is
t .

characterized by operators V, V , V , V+, will yield different scattering

(') f(*) f(+)amplitudes which we will define, respectively, f, f , , . The

conditions of symmetry derived in the preceding section lead, in this

given case, toward the establishment of correlations between these ampli-

tudes. In place of correlation (13), we obtain with the same method

f (_'i'-_2) = f(') f- _2' " _I)" (I)

Thus, the principle of separate equilibritm is fu_filled, if operator V

is symmetrical, that is if V = V'. The requirement of self conjugation

is not compulsory. Let us assmne, fer instance, that operator V is a

complex function of coordinates; then the n_,ber of particles will not be

preserved during scattering. However, in spi_e of all this the principle

of separate equilibrium will be fulfilled, since operator V is diagonal

in the x-presentation and, consequently, also symmetrical. If operator V

, , f(') = f(*)is self conjugated, then V = V , , and consequently

f(*) -_ 71)f (_i'_2) -- (-v2, - , (2)

! I
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that is, the principle of separate equilibrium combines the scattering

amplitudes of the particles by two complex conjugated fields.*

In place of cor_e!_tion (19018) we obtain, in an analogous way,

the foliowi_

12i [f(4-) (_2' _'I) - f* (_i' v__I =

i i f* (+)- 4_, (_I' _ f (_2' _) d_. (3)

Thus, correlation (19.18) is fulfilled, if operator V is self conjugated.

These formulas might be recorded in much simFler form, if we

introduce the operator or the scattering matrix

_ 2i

S (_I' _2) = g (_I - v2) + _ f ('_I' _2 )" (4)

Then correlations (19.13) and (19.18) will be stated as
follows

S (_'i' _2 ) = S (- 72, - 71) , (5)

_I S* (_I' _) S (_2' _) dr_ = _ (_i " _2 ) (6)

_lus, these correlations actually express the properties of

symmetry and uuitarity of matrix S, which is a11alogous to matrix S in
Section 17.

Contrary to the simpler example in Section 17, we have, in this

case, a continuous association of initial and final states, which are

characterized by the direction of motion of the falling and scatteri_g

particles, that is, by vectors _I and _2"

If the scattering matrixes which correspond to the amplitudes f('),

(') S(*) (+)f(*) and f(+) were defined as S and S then instead of

correlations (3) and (4), we would obtain

We will mention that, generally spea_ing, f _ f(') f* # f(*)

and f+ # f(+).
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s (71 _2) s('), = (- 702. - Fi), (7)

s* s(+) -
I n) n) d_ = 5 ('-;I- _2) (8)J ('71' ('_2'

It is obvious that the variational principle vy Hulthen-Kohn

(considered illCilapters I and II) is closely related to the principle

of separate equilibrium which was derived here.

It can be easily proved that the principle of separate /113
equilibrium is automatically fulfilled, when the approximate functions

'Yl and 4;2, which correspond to the initial and final states, are used in

a variational calculation of the scatt, :ing mnplitude. Actually, if

operator V is symmetrical, we obtain for f (71, - "_2) and f (_2' - _I )'

the following a_proximate expression:

-'v2) (_l'-" _2) _k _[ ~_2 k2 ~_1f (_1' - = _" - + (v2 + - V) dT,

f (32, - 71) = (9)

k f (W2 + k2 - V) _i/2dl".= _" (_'2' - _1) + _ _l

By subtracting these equations we obtain, according to (19.12), 0 in the

right part; thus, the principle of separate equilibrium is fulfilled for

the approzimate amplitude f independently frcm the fact if the principle

for the corresponding amplitudes f (71, - _2 ) , f (32, - _I) , in the

approximate functions _ _2 was fulfilled"l' '

Analogous results might be obtained also in the case of more

complicated problems.

Ue will now formulate the variational prlnciple which is directly

related with the correlation of unJtarity conditions (19.18). For this

purpose we ,.,illconstruct the functional

K --.I _2" (V2 + k2 " V) _I d_. (i0)

_'e ass_ue, thereb/, that operator V is self conjugated. Calculating

normally the variation of this functional, in regard to the accurate

' ml_ ,,_ 1 r ' ' " _' I
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wave functions _'_Iand Y2' we obtain

bK = 4_/__ 2i _ *
- k 5f (_I' _)2) + -k-d f (_2' _) 5f (_I' _) dto. (II)

The variational principle obtained in such a manne: differs essentially

from the Kohn variational principle, which was considered in Chapters I

and I!. If we consider a spherically symmetrical problem and resolve the

wave functions a_ scattering amplitude_ in formula (Ii) by the
spherical function_, then we will arrive at Hulthen's conTnon variational

principle for a phase.

A distinction from the variational principle by Hulthen for

partial w_ves is obtained only in the presence of inelastic scattering.

The formulation of _he given variational principle was explained in the

paper byMoiseiwitsch (Ref. 58) in a simple case for s-scattering of

hydrogen electrons.

If we utilize this variational principle for the numeric calcu-

lations a_] find such approximate functions, for ;hich the functional

K = 0, then obviously the scattering amplitude in these functions will

satisfy automatically the correlation of unitarity.

§21. The Scattering of Electrons by Atoms and uhe

Conditions of Symmetry

We will consider as before, for the sake of substantiality, the

collisions of electrons with hydrogen, although the results are genera-

lized directly to more complicated cases.

In order to obtain a formulation of the principle of separate

equilibrium, for the given problem, we will consider the condition of

symmetry

where the function I satisfies equation (7.1) and has an asymptotic form

(8.1) and (8.9), and the functional I is determined by the formula (8.10).

The condition (I) might be put down in the following form

J,2 . °
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By utilizing Green's formula twice, we o_tdin

lira ! d_ I I ,¥(i) __ v(j) _,(j) v(i) _ dS2 +
R2-= r2O__R2.'_I _r 2 "2 - "2 _r2 "i j

? -_(i) _ _(j) Jj) r_ v(i)_
,, -c---_2 - .is : dSl = 0. (3)

+ lim I dT_ I _ I 'JrI "i ' "
RI_._ _ z rl._R1

In thfs formula the asym_cotic form of the wave function (8.1) and /115.

(8.9) might be sabstitut_d. By utilizing the orthogonal and standardized

function _'n'we arrive in our final calculation toward the surface integral

(analyzed in the preceding section). By solving the amplitude f.. by the
lj

spherical function and utilizing the a_dition theorem, we obtain an

identity which combines the amplitudes of scattering of the direct and
reverse processes

i f (_ _., I _ - '_) (4)
k--_ ij 1' _2" - k f " _ug' ". jl . i
J

The equation which combines the differential and fully effective crc s

sections for the inelastic collisions (8.4)' to (8.6) follows directly

from this formula (see Landau and Lifshits, Ref. 36, Section 116),

k."o.. (Ul _2 ) -- k 2 .. (_ _ _1); k "_.. = k 2 ... (5)i i] ' j jl 2' i i] j 31

Analogous identities might be obtained also for exchange amplitudes gi;.j
For instance, from the condition

,(rI,r2) l =

= I [_(J)2 (r2' rl )' y_i) (_1' _2 )] (6)

it is easy to obtain with the same method the equation

I 1 -

_. gij (_I' " _2 ) = _. gji (_2' " _I )" (7)
j i
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In ¢rJe= to obtain the second basic identity, the analogous

identities (I_ ,I0), (18.6) and (19.18) should be based on the condition

I [,_.(i)* 7 _ w(J) (rl, r2)] ='1 GI' ,:' '2

= z [: (_ r _ i)*
i' , • , r_)] ;

= I [_ j) (r?, ;i ), _i)* (rl, r2)] ; (8)

whereby in the asy_.ptotic form (8.9) of the function ¥. we should£'

with _ .
exchange _n n

By conducting these same calculations we arrive at the /i16

following formulae

i [I * -, I m

2-_-Lkq fij (_i' 'J2) " _z fji _)' "_I) ' =

> I _ * (_. n) (_2' _) dw += - 4_ __. k-- ;J fin ' fjn
II

II

+ j gin (71' _) gjn (52' n) d'_]; (9)

1 rl * (7l'" 1 -. .71)_L_ gij =z) " k--.gji (u2' ] :
]

=-4,r .k J gin ('5'1' _) fin (?'2' z) a_,+
n

n

fin (_i' _) gin (_2' _) din_. (I0)

Thus, the formulac derived in the preceding _ection cal_ be e_JJly

generalized to a problem of two bodies: the collision be_:we_n a_ electron

and a hydrogen atom.
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It can be seen directly from the deriviation c_ these formulae

that they are of the most general character.

= _z_ formulae
If we assume _hat i = j, _i _2 and, if we uti!_

(8.4) a_d (8.6) for the differential and complete effective cross-section,

then formula (9) adopts the following for_

k.

i [fii (7, _) - fii ('J'?)] = _ oi' (ii)
i

k. 2 k. 2
i • 2

Im [fii (_' _)] - _.,; _.. (7, '7)
4_ - 11 162 '_i '

which is analogous to formul;_e (i[:.9) and (18.10).

In this section and also _n Section 5 we have calculated the

surface integrals b7 the sphere of a large radius, resolving the scatter-

ing amplitudes into _ row by sp_lerical functions and utilizing the addition
theorem.

During the calculation of analogous integrals in Ch_.pter I, we have

conducted _,direct integrati_n in the derivation of the va£iacional

principles, with the .nethod proposed by Dirac (Ref. 59, p. 205).

%t is obvious that both methods of calculation are equivalent; the

calculations in C_,apter I might have bee:_ conducteo with the same success

bl" using the method utilize4 in this _-ilapterand vice versa.

§22. Invariance in the Correlation of Unitarity During the
Phase Conversion of Atomic Functions

Formula (21.9) j derived in the preceding section, would not change

its form if we multiplied one of the atomic wave functions _ by the
i_ s

phase multiplier e . We will prove that this condition is actually

accomplished.

in the case of large r2, the asymptotic form of the function

_i) , _j) , we know _hat

ik.II. -- iknr2v(i) ,-. • i _2 e
%i <rl) e + _ _nfin knr2 ; (I)

n

L_
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_k _ "r2 ik r

y_j) _ ¢.. (_I_ e_ j'2 + _ , f e n 2
j " n jn knr 2 (2)

n

We will consider a most simple case; when the function !' is

exchanged s

,'7 = '_" e , (3)
S s

, . will remain unchanged.whereby i _ s j # s The remaining function s'n

During such an exchange the scattering amplitudes f. , f. should change
is js

in such a manner that the functions _._i)tand _j)t would not be qubjected

to any change_ It is obvious that

-i_fis, _ = e-i_f . (4)f'is= e " _js js

All remairing amplitudes f will thereby remain unchangeable.mn

If we substitute fo and f. in formula (21.9) in place of f. and f. ,
is ]s is ]s

the phase multipliers would become condensed in the s-term, and the

formula would remain unchangeable. This same effect will also be obtained

in the case of the exchange amplitudes gmn"

We will now assume that s = i. Then, by substituting _ with $i_

the entire function _i)" will be multiplied by the phase multiplier /118

e ; consequently, each one of the amplitude& f. will thereby be sub-
in

stituted as follows

i_f_. = e (5)
in in'

with the exception of fii" which will remain unchanged. In the function

Y_J)" only the amplitude f.. will, as before be exchangedjl

-i_
f.. = f..e (6)
jl jl
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We will write down equation (21.9) disregarding the exchange
amplitudes

2-_IL_. fij - _. fji = f" f" d_. (7)._ in Jn
J z nn

We will multiply all equalities by e and we will record separately
the term of the sum with n = i

I F I fijei_) i -i *q2i Lk. ( - _. (fji e _ J =
j i

i _ i_ * i -i_ * d00] (8)
4_ [_- kl---J(fine f do)+ Sfii J- f_ jn _. (fjie "

n#i n I

By utilizing formulae (5) and (6), we obtain

2i zj - _ fjij - 4_ in jn
j n

n

If we take into consideration amplitudes gmn' then all reasonings will
undergo an essential change.

Thus, the invariance of equation (21.9) is proved. A generali-

zation of the obtained results, in the case of several functions _'n being
is

multiplied s_multaneously by the phase mu]tiplier e n, is trivial. This

proof can also easily be made in the case of formula (21.10).

§23. The Correlation of Unitarity and the Relation Bet_,een
the Elastic and inelastic Partial Effective Cross

Sections of Scattering

During the deriviation of equations (21.9) and (21.10) it was not

required, generally speaking, that the energy operator possess a spherical

symmetry. If we should make such an ass'_ptlon _nd, in addition, assume

also that i = j, then after the solution of the m_plitudes fij and gij

by the Legendre polynomials, we will obtai_ a correlation which would bind
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the amplitude of the falling and scattered partial waves. This corre-

lation expresses the preservation of the number of particles and might be

obtained also from the conversion into 0 of the complete current through

the sphere of a large raGius surrounding the _tom (see, for example: the

paper by G. F. Drukarev, Ref. 54), in the same manner as was done in

Section 17 for a very simple problem. Actually

', (o_ ._

fin =L c_'in P6, (v n), (I)

_=0

oo

gin = _ d(_') P (_ n)" (2)in

_=0

Then,we obtain,for the respective effective cross sectiens

in k.k J Ifin (_ n) I dw =
I n

I _ 4_c ic(_ ) 12 i-- _(.g) (3)- k.k 2_ + i in : _ in '

i n £=0 _=0

where _(_). are the partial effective cross sections of the non-
in

interchangeable scattering. In an analogous manner the partial cross

section of an interchangeable scattering can be determined.

If we should substitute solutions (i) and (2) in formula _120

(21.9). assuming thereby that i = j, and if we should utilize the addition

theorem, then we will obtain

_O

i i (c(_) - c (£)*) P_ (_2ik. ii ii _ I " _2) =
1

_=0

O0

i 4_ c(_) 12 d(f) ""= i----_kl--- 2£ + in in4_ .... I ( + [2) e (_'i _2 )" (4)
ii

n ._,=0
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By comparing the coefficients at identical Legendre polynomials, we have

i k 2 ki23. (_) k 2
__ (c(_) (_)*) • > 3. (_) (_(_)2i ii - c - o =- $ -- + _7(£)). (5)ii 4x _ in 4_ i 4x ie ia

n

In this case c(%) J(£) (_) respectively, complete, elastic and
i ' ie ' a.3.a are,

inelastic partially effective cross sections, whereby the number of in-

elastic processes includes also the elastic scattering exchange. Let us

assl_e that c (_).. = pe i'_. Then
3.1

c(_) 4;_p2 2 (_) _(_) 4_
ie - 2 - p _iO ' OiO = 2 (6)

k. (2_ + i) k. (2£ + 1)
1 3.

and formula (5) might be recoraed as

°(C) = 7 _(%) 0(£) sin _ - o(_') (7)ia iO ie ie "

_(_) can not be less than 0 From this follows
la

_(_) _-(_)
ie oi0 , (8)

i.e. the corss section -(_) is the largest possible partial cross, °i0

section of elastic scattering. At a given value o(_). the possible values
le

o. are limited by the inequality
la

o(_) _ _(_)
• ! -ie ie

o _ _(_) _(o_ •
°i0 i0 ui0

In Fig. 2 the possible joint values o(%).and _(_). are defined iLl_lle la

ky the shaded region. An analogous graph is available in the book by

Elatt and Weiskopf (Ref. 60, p. 255). The curve in this graph represents

parabola with its apex at the point (.! _(%) 3 o[%))

# %

"ib iO ' 16 iO "
O
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J

eL'5 ea,

o o.1 o.t 0.8 _q a5 0._ 8.7 0.8 a3 zo

Fig. 2. Possible Joint Values of the Relation of Elastic

(_L_)) and Inelastic (_(_)) Part_ally Effective
e a

Cross-Sections Toward the S;:,ecificCross-

_[ ,

Section O_£) k2 (22 + 2)

The result obtained is g.':nera!and true if a solution by partial

waves is possible; that is, if the o,?erator of energy commutates with

the operator of the amount of motion moment.

§24. The Principle of Ne,-ersibility in Quantum Mechanics

It is a well known fact that the principle of separate equilibrium

or the principle of reversibility is fulfilled in quantum mechanics. It

is confirmed that the probabil_cy of transition of a system fro_: _tate
A into state B and from state _ into state A should equal each oti:er, in

classical mechanics this assertion can be easily obtained from the fact

that in a conservative force field a particle migh_ travel along a tra-

jectory in straight as well as reverse directions. It is possible to

prove that when this rule is not carrie_ out (for instance, in the case of

notion of charged particles in a magnetic field) the principle of revers-

ibility is not damaged.

Another basic situation for proving t_e principle of separate_i_22

equilibrium in classical mechanics is the Liouville theorem fro_ which zt

follows that density in a phase space does not change during an exchange

of systems in time.
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The principle of separate equilibrium finds an important appli-

cation in s_:atistical physics and is closely related to the second

principle of tbermo dynamics.

In quantum mechanics it is possible to establish (by utilizing
the separate equilibrium principle) the relations between direct and

reverse processes in the theor} of collisions; between a quasi-stationar7

state and scattering (Breit-Wigner resouance formula); between scattering

of particles which fall on _ potential barrze= from the right and the
]eft sides, etc.

_erefore, it is ,..ssential to give a general rule for the deriva-

tio_ of the separate equilibrium principle from a quantum mechanical

standpoint. It is commonly asserted (see, for instance, Ref. 36), that

this principle follJws fr_n the invariance of the Sch£oedinger equation
regarding the exchange of _Iswith _* and t with -t.

However, this reasoning is not convincing, since the wave function

_* (x, -t) does not characterize the reverse process at all and, as a

rule, does not have any simple physical sense. For instance, in a

problem on the scattering of particles by a potential field, the wave

function _'_ (_, -t) will have the following asymptotic form in the

presence Jf large r

-ikr - _E%
* _ ik_.r-iEt * e

(r, -t) _ _ + f U, n) kr ' (I)

that is, we can see that in the case of large r the function Y (_, -t)

is r_presented by the imposition of converging spherical and flat waves.

This function will, of course, satisfN the Schroedinger equation; however,

from this fact does not follow at all for instance the equation

f (_I' _2) = f (- _2' " 7i) (2)

which was oarived il, Section 19, and which exL.resses the principle of

separate equx!ibri_m. Tbe sense of the wave function which was reve=sed

_nto the past, _iffers essenti_ily from its normal sense. This /123
problem was investigated by V. A. Fok (Ref. 61).

The equality (2) was derived, for instance, in the paper (Ref. 62)

by a strict but sufficiently complicated method. Formulae (2) _nd (21.4)

can be easily obtained w_thin the frnmeworks of the Born approximation;

however, the transition from the Born approximation toward a general case
does not represent a trivial task.

1965024352-128



125

Ol_ the basis of the results obtained in Sections 1 through 5 o_

this chapter, we might assert that for a wide range of problems in the

¢_llision theory and also, for instance, in the case of problems on the

_._ssage of p_rticles through a potential barrier, the principle of

sepalate equilibrium follows from the s_m_.._'tryof the functional

I (12' _I) = J I'_ (H .-E) Y_dr (3)

in regard to the displacement of the functions _I ard _Y2 which charac-

terize the intial and final states.

In the separate equilibrium prlnciple, we will examine the passage

of a system between two states: A and B. Howe_,_,r, _n collision theory

the stationary problem concerning the scattering of a flat wave is solved

and, therefore, no passage or change in time with the system occurs. In

or_er to clarify the way in which the idea of transitions between two

states is related to our stationarity of the wave function, it is first

of all necessary to accurately determine the state of the system..

In the problem concerning the coilision of an electron wlth an

atom the state of the system is known if we measure the impulse of the

free electron and the state of the atom wt_ich is determined by a certain

collection of quantum numbers. Such a determination of state is the most

natural, The wave function which characterizes this state of the system
will have the form

.-_ -_

z_'.r0

e _ (rl, ... , rn), (4)

where k is the impulse (the wave vector) of the free electron and _ is
t_ wave function of the atom.

The energy operator H0 to which these funutions will belong is

obtained from the total, energy operator H minus that portion which

corresponds to the interaction of the atom with a free electron. (Let

us note that, while considering the exchange this part can be different

for the initial and ffnal states). Thus, we come to the usual organization

of the problem: unde.."the influence of excitation the system passes from

one state into another. Analogous to the way this was done in Section 17,

the _tationary wave function can be represented as a res.!t of a certain

limitary passag_ from _ non-stationary wave function. (The possibility

of this limitary passage was shown for example in Ref. 27). Then _he

scattering m_iplitude fAB will actually characterize the probability et the

transition of the system from on_ state into another.
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We will note a certain difference between the scattering amplitudes

for a reverse process in formula (21.4) and formulae (21.9), (21.10).

The initial state A is characterized by the wave function

t_1"¥2
v.A= e _i (_l), (5)

and the final state: B by the function

ikj_2"_ 2

: TB = e #j (_I). (6)

The passage between these two states is characterized by the scattering
amplitude

fAB = f'" (71" "_2)" (7)_J

fAB is compared in the principle of separate equilibriumwith amplitude

fB*A* of the passage between states B*

-ik_2"F2.
YB* = e "j (_I) = YB (8)

and .%*

-ik_'l "_ 2 , ..

_A*= e *i (_I)= _ (9)

The form o_ the function ¥_., ¥.. follows directly from the /125

bw AWe(i) t• "asymptotic form of the function _).

In formula (21.9) the amplitude fji (_2' _I ) of the reverse

process characterizes the pass,ge betwee, the states of B and A with

functions (6) and (5).

Thus, in formula (21.9) fJi actually characterizes the reverse

passage and in formula (21.4) fji characterizes the reverse passage

between the complex conjugate states. By discarding the weight factor_

we can write down equations (21.4), (21.9) for the general problem of

collision theory as follows
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f,_ = fB*A*' (10)

1 * \ *
z_ (fAs- fBA) =.;_Acf_c. (11)

C

Here the summation is extended to al! states C of the system which are

possible at the given energy value.

During calculation of the scattering amplitudes by the Born method,

we consider all f small and we neglect the magnitudes of the second order.

_nerefore, in the first Born approximation, we neglect the right part of

equation (1) s and we obtain

f_ - f_ =0. (12)
?
%

However, in the second approximation of the excitation theory this
difference will net be O.

If the scattering matrix S is formed according to the formula

SAB ffi5A_ - 2i lAB' (13) c

then equations (i0), (Ii) will be written in the form i

SAB = SB.A., SAcSBc = SAC, (14)

C -':_

i.e., they express the condition of symmetry and unitarity of the matrix k
S. \_

§25. The Symmetry of the Functional and Variational /.126
Principle for the Non-Stationary Problem "_

,.

We will examine the non-stationary quantum mechanics problem. The _
Schroedlnger equation in this case has the form ;_

H_= i_ . (l)
?
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We will limit ourselves to a case_ where the _nergy operator H is not

dependent on time. We will thereby _onsider that operator H might even

be non-se_f conjugated. This means that we include in the consideration

also such proces:;ea in which a number of particles is not prescribed with

time and consequently _.hestandard integral "[ ITi2 d7 is dependent on time.
t

We will examine the probability _f transition of the system from

some initial state, the moment tl, %rLto a certain final state, the moment

t2. To do this we shall introduce two self conjugated operators A and B

with their functions u. and v.
3

Au i = _iui, (2)

Bvj =  jvj (3)

and we shall consider that a task of the value of _i or _j simply deter-
mines the state of the system.*

That the function T in the initial moment tI = u.1

(tl) = ui" (4)

It is required to determine the probability of the fact that at the

moment t2, the system will be in the state v.. It is obvious that thisJ

probability will equal the square of the modulus of magnitude

SAiBj (tl, t2) = _ vj _i) (t2) d7, (5)

which we will call the matrix of transition.

We will examine the specific function of the operators H and /127
H+

H#n = EnSn, (6)

-- m n,i

In a majority of cases the condition of the system is simply

determined if the values are set up, not for one, but for several operators.

However, in principle, this does not change the operation.
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M+% -- %., (7)

which satisfies the condition of orthogonality

P .

We shall arrange in a row through these functions ui and vj

L

ui = ainSn = Sin Pn' (9)

n n

vj i (+)= bin _n = >_-_bjn'_n" (I0)
n n

Then the function T_i) cPn be presented in the form

T_i) = _ ain_ne'iEn (t - tl) , (II)

n

and the matrix of transition S will be equal to

SA.B. (tI t2) =_ b(+)* "iEn (t2-t I)' ,._ jn ain e . (12)
13 n

We will formulate the separate aquilib¢ium principle for this

general problem. To do this,we will e_amine the equation

H'_ = i _ , H' - (H'_*,_. (13)

where H' is the transposed ezmrgy operator H, and we will determine the

probability of transition on the state v., the moment t., into the state
J

ul, the moment t2. Then the initial condJtlon for che function _ will

have the form
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_ _ J) (tI) = v. , (14)
-- J

and the magnitude which ml,st be determinel will be equal to

Operator H' ha_ thesame specific value.s as operator H : /128

!

By resolving ¥_J) through the functions _n'We obtain

(+)._.-iE n (t - ti)

_J) = ! bin _n _ ; (17)
n

S(') =i a b (+)* "iEr' (t2 - tl)in jn e . (18)
TI

Thus

o(') t2) (19)
°Bj*Ai* (tI, = SAiBj (tl' t2).

Hence, the matrix elements of transition from the state u, the moment tI

into the state v, the moment t2 (the energy operator H) and the transition

from state v , the moment tI into the state u , the moment £2 (the energy

operator H') are reciprocally equal.

In order to obtain a correlation analogous to the correlation of

unltarity, we introduce, apart from the operators A and B, a third

operator C with a specific function wk
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.kn l_'n" (201
n rl:

then the matrix of transition from state v., the moment t2 into the3

state Wk, the moment t3 will h_ve the form = i

-iE (t3-t21 (211
SBjCk (t2, t3 / = _'Cl_l)*bjme m .m

By utilizing the correlation

• = _ntm d7 = 5 (22) "- 3n bjm mn j
j

and the expression for the matrices of transition (12) and (21_ w_ obtain
the correlation

>.3AiBj (tI, t21 SBjCk (t2, t31 = SAiCk (tI, t31. (23)J

Thus, the matrix element of transition from the initial into a /129
final state can be obtained by means of a summation through the inter-

mediate state. By letting C = A and t3 = tl, we will obtain the

correlations which are analogous to the correlations of the unitarity
introduced in the precedlng sections.

We will now formulate a variational principle for the observed

non-stationary problem. Hereby, for simplicity we will let H+ = H
although such an assumption is not compulsory.

We will form th_ functional

t2

i ( 2 '

tI
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in which the functions _ i) J) satisfy the conditions :;

_ i) (tl)-= ui, _ J) (t2)"= vj, : (25)_

. " a'_dwe shall examine the variation of this functional in the reighborh0od

of''the func:_ons ¥(i) _j) s-I ' _ which are accurate solutions to equation (i)• -, - . :

with the initial conditions (25). Then, through an analysis of the -
functions T and:_ = T + 5_ by the s;ecific functions of the operator H,
we obtain

v c ,

,[-; : $

-- tl)
_.-_i) I -izn Ct- _ .._ain%ne _ , (26)

L

?

= n , (27)
n

-l_(i) = _ i) t) 5ain) 9n e , (28)+ _ = (ain + n - ;
n

• -iE (t-t2)

n

Here, the coefficients ain , bjn are not dependent upon time and 5ain ,

5bin are the functions of time and satisfy the conditions

5ain (tl) = O, (30)

5bjn (t2) = 0. (31)

By substituting expressions (28) and (29) for functions _i) , _J)
in the functional (24), we obtain
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133 _:___'_l_ ,;

.- ,!_ ) -,i (_ _ i))+ al: 81: ._

,-t2. _, : _ '" -iEn(t-tl) , ,;
. izn(t-t2)

=! _ bjne - (En - i 5aine " -"t + ._

n,. tI

t 2 _

+ dt _ 1)* - i ' (i) d7. (32) _ +:

By conducting an integration through the_parts in the first integral, and _,_,

taking, into consideration condition (30), we obtain _ ._ -.,- _:_

,; -iE (t -tI) : _,_ _ * n: 2

BI = - i Lbjn 5a. (t2) e + _.

n _

t2 : }

t I _
"t

It is easily convincing that the first member of this expression i
coincides accurately up to the factor with a variation of the r_atrix _

element of transit _._SAiB] (tI, t2). !I

Actual ly 1

i

- . "iZn(tZ-t_1
->j bjn [ain + 8ain (t2)] e = _-

n _
Y

= SAiBj (tl, t2) + 8SAIBj (tl, t2). (34) i
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_y disregarding the members-of the second orderi_we Obtain

.s" ••. 51 - loS&iBj"' (tI, t2). (35).

Thus, the stationary vatue of- the functional

i

_., j ,. = ( , 1+ 7 , ) =
lj

: i) (t2)i,idv + 7 J_ 2 -._ v

' _l'; b
? : 2

:: under'additional.conditlons (25) is equal to the matrix element /131

SAiBj '
of transition : _.

h ,j

By utilizing the obtained variational principle we can work out
the approximate methods of calculation of transition probabilities and
likewise derive other results which were obtained in Chapte_ II for the
stationary problems. Tnus, for example, by substituting instead of

function _(1)_lthe function ul, and instead of function _J) the accurate

function _J), we obtain also an expression for the matrix element of

transition, which is analogous to the lutegral identity derived in

Section I0_ t2

t 1

The extreme trausition from non.-stationary to stationary problems
is concluded first of all in the fact that the initial and final moments

of time, respectively, approach - _ and + =. In addition, for the
scattering problem, operators A and B in this case characterize the

direction of movement, the velocity, and the interstate of the colliding
particles, respectively, before and after collision.
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Within its limit the wave function fi produces a-function which: +_ii
satisfies the radiation prin=iple, the Lasym_totic fdt_r,of which con_ins :

pl_in-and divergent •waves; the fund'tion !'. satisfies within its limit o -_
t z -,_
he reverse radiation principle• As tI and t_ approach ±-_ within the _ -,

limit, all matrix elements for the trafisitiong with an energy change of -, - :

the system, are reduced to zero. . " i !

= The correlation which relates the complete C_oss section of ,

scatt_eringwith the imaginary pact of the scattering,_plitude on a _ _ + ..

zerO,angle was obtained in the case+of r.hequantum mechanics: problem - -_ _ . i
by _ednberg (Ref. 63) and was considered further in a series of wbrks + ":. , . ._,

(Ref. 64). In-,a general,form the-symmetry properties of_the scattering -- _i,_i
matrix were investigated in. the work- by Lippman and:Schwingez (Ref. 27). " ....._ _

The/_general properties "of the matrix of transitlon_ which were examlned _ .:._-,+,_,

in,lt_h,lssec.tion_are analogousto the initial correlations '[6the Work ,,:._,,_,
(Ref. 65).: ..1"nederivat_ion.:of,,thecharacteristics Of syrnnetry ,,f0_ _i3_2,

stationary,problems examined _n this -chapter-is-present -inlth_:agthor+s . ..
w0rk _(Ref_:_66)-._'In.--Ref._67 _the-c0rrelation -of-unita__y iS fitiiiz_d '_,.
fbr+an est,imatlon of the imaginary part:of the elastic scatterlng_ampli-
tude of the _lectrons by atoms. The results obtained are Utilized for _"
the interpretati0n of experimefl'tsin electron difraction on molecules. _

The formulation of a variaticnal principle _for non-stationary _ -: _ :,"_:..,
problems _aen the energy operator is likewise dependent on time is -_ ""_._-,_

present in the work (Ref 68). _ .,

o ,-_
) ;,

; 5

i

¢

.j
J
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CHAPTER IV

THE VARIAIION OF SCALE AND THE VIRIAL THEOREM FOR

PROBLEMS OF SCATTERING

§26. The Virial Theorem in Classicai Mechanics

We will ex.-mine the system with n degrees of freedom which is

described by the Lagrange function L(ql, q2' "'" ' qn; 41' 42' "'" ' qn)

and is not dependent on time, and we shall proceed from the Hamilton

variational principle. According to this principle, the integral

t2

S = _ L (ql' "'" _ qn; 41, ''- , _n) dt_ (i)

tI

which is calculated along the true path is stationary relative to any

given variation of generalized coordinates qi (t) in the case where the

variations 5qi (t) are reduced to 0 when t = tI and t = t2. If this

condition is not observed, then

n tTt25s = 8qi . (2)
i=l t=t I

We shall vary the szale; that is, w_ _hall let 5qi = _qi(t) _,_ere

e is the small parameter. Then, by disregarding the members which are

proportional to ¢2, we have

t2

S + gS - _ L (ql + cql:'''' qn + eqn; ql + cql"''' qn + Cqn ) dt =

tI

t2

= _ L (ql"''' qn; 41""' qn) dt +

tI
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t2 n

+ e _. I _<q_'_iqi + --_qi_Lq_idt" (3)

tI i=l

On the other hand according to (2) /134

n _2
5S = • _ qi (4)

i=l

tI

Thus

t2 t2n n

_L I

rI_-__+__ _--2_ q__i _''tI i=l \Sqi " Oq_ i=l

If the movement of the system is periodic than the period T can

be taken as a time interval. Then the right member of the equation dis-

appears. If, during an unlimited increase in the interval t2 - tl, the

coordinates and impulses remain limited, then by dividing the equation

t2 - tI and reaching the limit, we shall again obtain the fact that the

right member in the limit is reduced to 0. In both cases

n

i=l

where the line designates the average in time. For the system N of

interacting particles in the potential field

N 2

--f-mkvkL = - U (_I' "'" 7N)" (7)

k=l

Equation (6) will be written then as follows
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N

,__,_2 -'rk" vkV(_l' _2' " ' rN)J'_. v - .. --
k=l

N

o " --0.
k--1

If U is the homogeneous function of the coordinates, i.e., if

U (_7_, c_2, ... , o_ N) = dmu (71, 72, ... , 7N) , (9)

where m is the order of homogeneity and according to the guler theorem
on homogeneous functions, we have

N

> 7k • vk u (31, 72, • • , 7N) = mU. (10)
k=l

Herefrom and from (8), we obtain /135

2T = m U. (II)

In the extremely important, specific case m = - i (the movement
of charged particles or heavenly bodies)

2T = - U. (12)

By utilizing the equation T + U = E which .isfuifi]led at any giver_
moment of :-ime(7) can be written in another ferm:

N

+ )i7k "Vku = 2z. (13)
k=l

Formulae (5) , (7), (9), (Ii), (12), and (13) compose the content
of the virial theorem in classical mechanics. These formulae are valid

only in the case of limited trajectories in the phase space. The virial
theorem was originally proved by Clauslus and found broad application in

1965024352-143



139

theoretical mechanics as well as in statistical physics. Its derivation

from the variational principle was proposed by V. A. Fok and Yu. A.

Krutkov (Ref. 69).

§27. The Virial Theorem in Quantum Mechanics.
The Related States

We shall consider for simplicity the movement of one particle in

a potential well. In this case the energy operator has the form

H = i V2
- _ + U (¥). (i)

In exactly the same way as in classic mechanics, we will proceed from

the variational principle for a discrete spectrum.

If the equation

H_ = E_ (2)

has a solution for discrete energ 7 values then the functional

"- [ '_"E -- _, H, aT (3) -.

under an additional condition /136

, 'J, dT = ! (&) :
<

a stationary relative to the arbitrary variation of the function %.

We will vary the scale of length in the wave function; i.e., we _

shall substitute '_

(_)for_ (¥+ _) (s)

,$

in the function. In order to satisfy the condition of standardization _.
it is necessary hereby to multiply _ (r + ¢_) by a certain factor.
Actual ly _

i.i
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.

r 2 1 1
= t I* (_)l dr • - . (6)
o _ (I + _)3 (i + c)3

Thus

3

=, (7) + 8¢ (F) = (1 + c)2 ¢, (F + c7). (7) '

By substituting the varied function in r.he £unctional (3), we have

+ 5E= (l+ c)3_* (7+ _F)x

/ I V2 -_x,-\_ + u (r)j_(7+ oF)dT--

= [_ (_) -_(1+ c) + v _ (_) dr . (8)J p + 6 p

We shall resolve the right member in degrees of c and we shall

discard the members on the order of e2 3, 6 , etc.

f .--bx¢ (_)d_p=_- c _,*(_)[V2+pp •Vpu (p)]_ (_)d_p. (9)

From the variational principle it follows that if _ satisfies
equatior. (2) then the member whlc,i is proportional to £ should disappear;
that is

r¢,j (7)Iv2+ _ •v u (_)]_ (;)d_= O. (lO)

or else

2¥ =_ • V U (¥). (n)
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By utilizing (2) it is possible to rewrite equation (I0) in the form

I_

j 14 (3)!2 [2u (_) + r • vu (3)] d7 = 2E. (12)

It is definitely obvious that this derivation is valid also __

any given number of particles if by _ we understand the radius-_ .ctor in

the space of the configuration. Thus, we will obtain the forr.,'Laewhich

are definitely analogous to the formulae of classical mechan:_s except

for the fact that there the average is conducted through _ great interval

of tim6 and here equation (ii) is fulfilled at any giver moment t. In

exactly t_is way it is_possible to write 2T = mU for a homogeneous
function U, and 2T = -U for the Coulomb interation (an atom with

many electrons).

The virial theorem in the form (Ii) was given evidence almost

immediately after the creatien of quantum mechanics by somewhat more

complicated means (Ref. 70). Derivation of this theorem from th=

variational principle by means of the variation of scale of length was

at first proposed by V. A. Fok (Ref. I0). Such a deduction is easily

generalized also for a case of the Dirac (Ref. I0) theory and for the

Thomas-Fermi (Ref. 71) statistical atom theory.

The method of scale variation was utilized earlier in connection

with the_Ritz method in variational calculations of energy levels of the

simplest atoms for instance by Hylleraas (Ref. 5) for helium and for ions

which resemble helium. The scalar variation permits the introduction of

one new va=iable parameter into the wave function without an additional

calculation of the matrix elements. Because of this the accuracy of

calculations has been substantially increased especially for a small

number of parameters.

We will note that the virial theorem should also be rigorously

performed for approximate _ave functions obtained by variational

method if the scale of length enters into a number of variable parameters.

It is fulfilled, in particular, for all approximate atom functions

obtained by the Hartree and Fok methods.

§28. The Vlrial Theorem for the Scattering of Particles

by a Central Field. Partial Waves

We will examine the most simple problem concerning the scattering

of a flat wave by a spherically symmetrical center of force. After the

solution by partial wave_,_,e come to the system of equations (4.5).

dZ + k" - 2 " _k (0) = O. (I)
r
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We will define _ (_ + I}_+ 2U (r) = V (r) We contin,-e to assume2
r

that Ir2 U(r) I < M; i.e., it is limited at any given values of r. Then

we come to the equation which is general for 8!I values of £

F d2. + k 2 - v (r_] *k Or) --O; *k (0) = O. (2)LdrZ

The solution of this equation for great values of r has the asymptotic
form

# (r) _ A sin [kr + _ (k)]. (3)

We will use the variational principle of Hulthen (4.18) and we will

conduct a variation on the scale of length in this case. We form the
fun( tional

0

and we shall substitute in it _k (r) for _k (r + 6r). Hereby, the

asymptotic behavior of the function

_k (r + 6r) _ A sin [(k + ek) r + _ (k) ]. (5)

is changed. If such a function is substituted in the functional then

the integral will diverge, In order to ensure its convergence, it

is necessary to substitute in the functional k for k + ok. We obtain

O_

I' = #k (r + 6r) + (k + 6k) 2 - V (r) _k (r + _r) dr =

0

Oh

402 + (1 + e) 2 k ~ . V _k (p) 1 4- e "0
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= Jr ,)ik (P) (l + 6) dp + k2_j - 11 + 6 V +' _k (p) do =0

: #k co)L(I+ •)v (p) 1+ • +
0

We lay out the subintegral function in a series by degrees of • and dis-

regard the numbers which are proportional to the square and to the higher

de_':ees of £,

1 vL1.7)-(i+ •) v (p) I+ •

:v+ •v- (I - •+ ..) v (p - •p+ ...):

= V + •V - V + •V + •pV' = 2•V + •pV'. (7) _

By substituting the integral p for r we have

I' = • _rk V 4 r _rj dr. (8)

0 i"
;f

On the other hand the integral I' can be examined as a functional ,!

I.k+•k in which is substituted the variational function
?

= *k (r + •r) = Ck+e_k(r)+ O,. (9)

The function 9k+£k (r) has the asymptotic form

¢1¢'_•k (r) -_ A sin [(k + •k) r + _ (k + •k)]; (10) "

and thus

(k) " _ (k + £k) + 8_, (11)
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= - ck (12)dk "

By utilizing the variational principle (4.18),we obtain /140

I' .= A2ek 2 dq] (13)dk

By comparing (8) and (13),we have

On

J %k (r) . V + r dr = dk "
0

The member _ (I + i) which is contained in function V is abbreviated in
2

r

the brackets under the integral,and we have,thus (Ref. 39)

On

' (_) (r) dr = A2k 2 _ (15)'(_) (r)(2U+r dd---rU__k dk "2f_ k
0

Formula (15) is of interest from several viewpoints. In the
first place it is similar to formula (12), Section 2, and was obtained
analogously. We thus have a generalization of the virial theorem in the
case of a continuous spectrum. In the second place by utilizing formulae

(14) and (15) we, knowing the function %k (approximately or exac:ly)

when k is fixed, can by means of it determine not only the phase _ (k)
but also its derivative; i.e., we can determine also the change in phase

(k) in the vicinity of the point k. In the third place it is curious
that formula (15) has an identical form for all values of _ and % itself

does not enter into it openly. Then, since the functious _ or the

phase _ are not directly related to each other, the solution to equation

(i) in the case of each _ is an independent problem, and only at the very

end the various _ are combined in process of determining the differential
and overall effective cross section.

It is likewise interesting that the generalization of the virial
theorem or problems of a continuous spectrtn is conducted easily and
n_turally in quantum mechanics, whereas in classical mechanics this is

not so simply achieved. This generalization could not fo£_nerlybe
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conducted because in classical mechanics a functional which is simul-

taneously stationary and reduced to zero along a true trajectory, cannot
be constructed.

§29. The Most Simple Example

We shall confirm the validity of the verified formula in the most

simple example of a rectangular potential well. We will let

V (r) = - V0, r < a; _! (r) = O, r > a, (i)

and we shall examine only the s-scattering (_ = 0). If we designate

V0 = ko, then equation (28.2) wJll take the simple form

" (k 2 02+ + k) _ =0, _ (0)=0, r<a,

(_ 02 " k2,= sin k2 + k r); _ + = 0, r > a,

= A sin (kr + _). (2)

By equating the function and their derivatives where r - a,we find A

and

- ' , tg + k0 e) - ka,

arctg L_ik2 + k02

A2k2 = k2 + k2 c°s2 (_k_2+ k20 a). (3)

By differentiating _ through k, we will obtain after simple calculations

_= _o__ _j_.2�_o _,_

_+ _o_oo,__4_ _"
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2 /k2 2

A2k2 _ = k0 sin (2.__ +2 k0 a) - ak 2 _ (__. a). (5)
dk 2 Jk 2 + k0

During the calculation of the integral it is necessary to take
into consideration that

2
V' (r) = k0 5 (r - a), (6)

Th_s /142
a

d___Vhdr =[" ,2 (r) V + r dr.)J
0

2 a) ==_2_02; _o_, r)_ �_02s_o2_,/_+_0 "
0

_02 ,_2 �__2-_0_
2 k 2 + k0

= A2k2 d__k ' (7)

which is necessary to prove.

§30. The Derivation of the Virial Theorem Without the d_,lization
of the Variational Principle

We will now examine the way In which the basic f:_,,,&a (28.14) is
obtained, not utilizing obviously the variational priu, i_:,e. Fc,r this
we will examine the integral

oo

0
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We shall reorganize the subintegral expression by utilizing the equation

which the.function t_ satisfies. We have

r _ k2 vh _ + 2k, O;(_+k2"!)* O; /
"_r 2 ' = _-0_ + " =

+ k 2 - V'_ k -- " 2k2'; + _rr = _rr ,'t; (21
'br /

_r 2 r t:

= .2V + r #. -_

Thus, the integral (I) coincides with the right member of equation (28.14). i

We shall introduce the designation /143

_=r - k_- . (3)
Z

It is easy to determine the asymptotic form of the function _ ,)

# "_ sin [kr + "_ (k)], i_

r _ kr cos [kr + _ (k)],

k_~._¢ (kr + k _k__o_ [kr + ,_ (k)], _

~ - k d_ cos (kr + _) (4)dk '

In addition, it is obvious that the function @ is reduced to 0 when
r _0.

T
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By integrating thro-,gh the parts twice, we obta.:n

GO

0

0 0 dr-

E;e integral in the right number is equal to 0; the member outside the

integral is reduced to 0 at a lower limit. By utilizing the asymptotic

form of the functions #, _, we obtain

(*g' - *'_) r-_ =

[sin (kr + _) k 2 d_--_ • _ sin (kr + 1])+

+ k cos (kr + I]) • k _ cos (kr + I])7 =dk
_r.._o_

= k2 d_
d-_ ' (6)

which is neczssary to prove.

It is easy to see that in essence the pace of evidence here is

the same as it was in Section 28 although the variational principle /144

is also not utilized directly. The function @ in a given case is

proportional to 5_ for that particular case of variation which was

examined in Section 28.

_31. Certain Identities Related to the Virial Theorem.

The Connection Between the Discrete and the

Continuous Spectrum

We will examine the equation

#"+ x# =v (r)_,; _ (0) --0. (l)

1965024352-153



149

We will let the potential V (r) be such that the equatior has a limited

solution for any given k = k2 > 0 and only for a certain finite number

of negative values

k =k < 0, n = I, 2, -.- , N- (2)
n

We form the function F (r) according to the formula

N

F (r)=_ l 2 r 2 d__._ %-*n (r) + _: ,_ (r) -i" " (3)
n

n=l 0

Here, % is standardized for a unit and the functions of their continuousu

spectrum %k are standardized for X; that is, the conditions

[.

' Sk (r) %k (r) dr = 5 (k - k'); (4)j

N _o

r- p

) _n (r) _'n (r') + j *K (r) _X (r') dX = 8 (r - r') (5)
n=l 0

ere :ulfilled.

In (3) we shall proceed from the integration in k the integration
into k

=O QD

r _ _ ,'2 d_j ,,. (r) X" =J _a_.(r) k2, (6)
0 0

where _k are the standardized wave functions for k. Their asymptotic

behavior is easily obtained from a comparison with the function sin kr
since the standardization of the functions of a continuous spectrmn is

dependent only on their asymptotic behavior /145

Iak ~ _-2--sin [kr + _ (k)]. (7)

By proceeding to the usual function _k (r) _ sin (kr + _) _k = _ _k'
we have

1965024352-154



150

N =

F (r)= i--:n _ . • (8)
n

n=l 0

dZ
We shall now multiply F (r) by 2V (r) + r dr and we.shall integrate
by r

co

I F (r) (2V + r V') dr =

0

N =

n
n=l 0

+2 !dk _,2
_-f
0 J0 _':_(2v + r v') dr (9)

By utilizing both forms of the virial theorem (27.12) and (28.15)

co

r2
o *n (r) (2V+ r V') dr = 2)_n, (i0)
0

OD

[ 2 k 2 d--I} (Ii)• _rk (r) (2V + r V') dr = dk '
0

We have

2 [N_ + q (=) - TI (0)] -- F (r) 2V (r) + r dr. (12)
1t

0

However, it is known (Ref. 56) that the change of phase during
the change of k from 0 to = equals exactly N11where N is the number of

combined states (levels of a discrete spectrum). Thus, the left /146
side of equation (12) is equal to zero, and we have

r
j F (r) (2V+ r V') dr = O. (13)
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Tile function F (r) is directly related to the Green function: for operator

d 2
_ - V

dr 2

N _

G (r, r') = '_n (r) '_'_n(r') + r _:_ (r) ,!'X(r') -f- . (la),J

n=l n 0

Herefrom, it is seen that

F (r) --C (r, r).

Finally, we have

j G (r, r) (2V r (15)
+ V') dr 0.

0

This formu , is directly related tc both forms of the virial theorem.

It is valid only in the case of a continuous or a discontinuous spectrum

of specific values.

It is curious thst for the case of a purely discrete spectrum it

is impossible to obtain such a foimula. In this case the integral in

formula (3) disappears ang N will be equs! to _,, respectively, in

formula (12), the left side is reduced to _, and thus the integral in

(15) for a purely discrete spectrum always diverges.

We will now show the way in which the formula combining the inte-

k_ (k) dk with the value of the potectial V where r = 0 followsgral

0

from the virial theorem.

An analogous formula was obtained at f_rst by Gel_and and Levitan

(Ref. 72) for a corresponding problem of & discrete spectrum. For the

problem of a continuous spectrum this formula was obtained by R. Newton

(Ref. 73) and was given a more rigorous four_ation by L. Faddeyev (Ref. 74).

Since the formula is already derived and riEorously founded,

we will only mention the reasoning prucess which permits it to be
conDected with the virial theorem.
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By integrating both numbers of equation (Ii) to k, we obtain

OD _ CO

0 0 0

The integral in the right part exists Obviously only in the case when,
-2

with the i-crease of k, the phase _ (k) decreases more rapidly than k

It is possible £o prove (using for example the expression for a phase in

Born approximation) that in the case of great values of k, the phase -'

usually decreases, as k"I. More accurately _

CO

= - _.[ V (r) dr + 0 (k'3).(k) (17)

0

It i_ obvious herefrom that if the right pa_t of formula (16) is final,

then the following _,,adition should be fulfilled

IV dr = O.
(r) (18)

0

It is obvious that here -_ith the equatiol_
QO

0

is also valid. Proceeding to an examination of the left part of formula

(16) it is necessary to note first of all, that a change of the integration

order in this formula is inadmissible; a transition to the limit k-*

should be made after the transition to the limit r -__. Other_,is_ the
CO

calculation of the integral _k (r) dk ylelds an infin:.ty, which enters

0

the subintegral expression as a factor_ and thus, the integral cannot be

calculated by r.

We shall reorganize the left side of the formula (16) /148

utilizing the resolution of the delta-functlon through the sFecific

d2
functions of the operator -- - V and through the functions sin kr

dr 2
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oo N

5 (r- r')= 2_, k (r)_k (r')dk + _ _'n(r)*n (r'), (20)
0 n=l

9 P

5 (r - r') = _ i sin kr s_n kr' dk.

0

Herefrom,we obtain formally

,_ =o N

(r) dk = sinz kr dk - _- (r) =, 2 , n
0 0 n=0

N
2
(r)], (2t)5(°) -i %

n=1

W

and the left side of equation (16) is written as follows

Strictly speaking, in order to base such a subscitution, it is
necessary to indicate that the equation

K N

lira _ (r) *k (r) dk + _ *n (r) -
K-_co

0 0 n=l

K

j sin2 kr dk dr = 0
0

is fulfilled for the arbitrary values of _ (r) from a sufficiently broad
class of functions. This equation can he given evidence by investigating

the analytical properties of the function #k (r).
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CO CO

2 d_,
dk

sin kr_ZV+_jdr-J
0 0

- _ _n (r) .V + r dnJ dr. (22)
n=l 0

If the viria! theorem is utilized for a discrete spectrum
(i0), then the second item in this expression can be written as

N

- _ '> k . (23)L.J n

n=l

The first item can be reorganized by utilizing equation (19) and the

Dirich!et formula from the theory of the Fourier integral

Oc CO

J" d__ drr dk sin 2 kr ('2V + r drl; =j
0 0

CO K

= lira 2V + dr sin 2 kr dk =
J

K-'CO
0 0

CO

ffilim V + r _"r -) dr ffi
K..co

0

CO

1 lira V+ r ---
= - 4 r 4 V (0). (24)

K-*CO
0

By utilizing (16), (22), (23), (24), we obt_.in

CO N

f k2 "d-_ dk = _ i " (25)dk - _ v (o) - _ xn
0 n=l
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By integrating the left side _ this equation to the members and by

noticing that the number outside the integral k2_ is reduced to 0 when

k --0 and k = =, we finally obtain

oo N

_2r 1 i3 k_ dk = _ V (0) + kn. (26)

0 n=l

in the case where an integral from V (r) is not 0, we can obtain

an analogous formula if we note page 150. First of all, subtract from

I

both sides of the equation (ii) _ J V (r) dr, and only after this /150
0

iDtegrate to k.

Then, by having repeated the calculat ons, we come to the formula

" 2-_ V (r) dr_ dk =_ V (0)+ knJ

0 0 n=l

In the derivatzon of these formulae,we assume that _ = O; that is, that
-2

the potential V decreases when r --r_ faster than r . The generalization

of the formulae in the case of _ # 0 is _.resent in the work (Ref. 73) and

does not present any complications in principle.

§32. The Case of a Field Which has the Coulomb _;,!_t

Character at Infinity

This case requires special consideration. We will consider that _j
in equation (28,2) the potential V contains the Coulomb member [see (5.2)]

v (r)---c+v (r), (1)
r

•where v (r) decreases at _ no less rapid than r . Then in the case of _';

fixed c and k the solution to the equation will have the asymptotic form -_

of (5.61

%k, c (r) _ sin kr 2k in kr + _ (k, c . (2) 2_

%

._!
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If we now vary the _ocalein the functional Ikc (9), we obtain

_ c__ In k (r + or) + Ti (c, k)l ='_kc (r + or) _ sin (k+ ok) r 2k

I c+ Ec= sin (k + _k) r - 2 (k + _k) In (k + _k) r + _ (c, k) . (3)

Here it is seen that in tbe functional I' it is necessary to substirdte
not only k for k + ok, but also c for c + Ec. Only in this case will the
functional remain convergent. We obtain /151

O0

I' = *kc (r + er) +(k + ¢k)2 c +tee
0

• dI(d@ k 20

. c (I+ c) I+ e v + *kc (p)dp =

' 2-- _ Skc (r) [2v (r) + rv' (r)] dr + 0 (¢2). (4)
0

We now utilize the variational principle derived in Section 5

I' = I k + Ck, c + cc [¢'k + ok, c + _c (r) + 551 -- " kSTI; (5)

E c+ ¢c$k + ok, c + cc (r) _ _*.n (k + ok) r - 2 (k + ok) In (k + ok) r +

+ I] (k+ ek, c + ¢c)] ; (6)

I] (k, c) = TI (k+ ck, c + ¢c) + 5"q; (7)
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8TI= - e_c +k . (8)

From (4), (5), and (8) we have

oO

0

In compe.rison with (15.3) this formula is less suitable for practical

calculations, since it contains the value _ , _hich is of considerable

lesser interest than _k "

We will note that for related states the presence of Coulomb

members does not change the _ormulation of the virial theorem since the

asymptotic behavior of the wave function at great distances from the

nucleus does rot substantially change.

§33. The Variation of Scale in a Three Dimensional I_

Case for Problems of Scattering

We consider the equation

[V2+ k 2 -V (¥)] _ (_) = O. (1)

It is necessary, in this case, to understand the variational principle of

Kohn, which was investigated in Section 6, and conduct a variation of i,

scale in the functional (6.8), (6.17)

Ik (_2 _I ) = f _2 (3, k) [V2 + k2 - V (3)] _i (_' k) dT. (2)

.f

We will produce a substitution

_l (3,k) _ _I (3+ _, k);_Z (3,k) _ _2 (3+ c_,k). O)

The asymptotic form of the function_ _i' _2 changes hereby

i (k+ ek)_._ ei (k+ ek)r

_i (3 + e_, k) ~ e + fk (_i' _) (k + ck)r " (4)
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In order to assure the conversions, we will replace k for k + ¢k

in the functional (2). We obtain

I' = f Y2 (7+ e_, k) x

x [V2+ (k + _k) 2 - V (7)] YI (7 + 6_, k) d_. (5)

We will act in ap_proximately the same way as we did in Section 28:
we will substitute r + er for p and utilize equation (i)

I i (V2 + k2) .I'=. Y2 (_'k) l+ _

(i+ c)3 v I+ c i'I p

I [-- r )] Y1 (7 k)tiT; (6)1 V (7) 1 V ( 1 + e=, "_2(7, k) 1+ c (l+ c)3

dTp V2 2 V2d_ = ; = (1 + c) .
(i+ c)3 p

We will lay out the subintegral expression in a row in degrees/153

1._--_ (1 + _)3 V 1 + ¢ :

= (1 - _) V (_) - (1 - 3¢) (V - _ • V V) + 0 (c 2) =

=2c v (r) + cF • vv (7) + 0 (e2) o (7)

By examining I' as the varied functional Ik + _k (_2' _i' we
hove

_'V'l = _l (7 + £_, k) ": _! (7, k + Ek) + 8_1;

_2 " _2 (7+ C7, k) = _2 (_' k + ¢k) + 8_ 2. (8)
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Here from

_f2

5f2 = - 6k -_ .

And finally from the variational principle (6.16), we obtain (Ref. 39)

I _fk (_i' - _2)• _2 ('_) [27 (_) + r • W (r)] Y1 ('_) dT = 4_ c)k (9)

Thus, we have obtained a virial theorem for the general problem
of scattering by a potential field.

§34. The Relation of One Dimensional and Three

Dimensional Cases (Ref. 39)

In Section 33 we made no assumptions concerning the symmetry of

the potential V (3). Let us now assume that the field is central and the

potential is dependent only on r. Then

d_X
• _'_ (r-_ ffir dr ' (I)

We will show that the one dimensional formulation of the virial

theorem (28.15) given exactly for the case of the central field follows

from the three dimensional (33.9). For this purposej we will analyze the

wave functions and scatte::in_ amplitudes by these spherical /.I..54

functions or partial waves. _hen [see (4.3, (4.4)]

CO

fk (_1 " ) 1 - Le I]P' = 2-[ _, (22. + I) r . (_1' " _2 ); (2)
_=0

OO

1

_1 " I (2_ + 11 i _ e i_' _r #L (r) P_ (_._),
_=0

(3)

_2 i_ (2_ + I) i_ eIT1_ I= k'_ _/_ (r) Pg (p'2._).
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Fur thermore

P0 ('_j'-72) = (-)_Pp (_i'_2)" (4)

Let us differentiate (2) through k. Thereby, in the right side

only the phases _9 are dependent on k

dfk ('_'I'- "_2) =- 2i_ d_,0 9.

4_ _k = 4_ '> (2% + I) e " d--_(-) e_ (_!'_2)" (5)

9.=C

Let us substitute, in the left side of equation (33.9), "_I and "?_ in the

form (3). By utilizing the orthogonality of the spherical functions, we
have

dV---7 (r) dr'i _4"_' i(T_+TI_')_ (r)[2V(r)+,--drj*:' e x
_,,p'--O

x (2£ + 1) (2_.' + 1) j P9 (_2 " _) P.e' (_1 n) dw =

J

= l___k2 ,'__ Ll-.it (2v r _rrj ,}9
#l (r) + dV_ (r) dr x

I=0 0

zi_n
x .!"P1 (_z.n) " P_ ('_l'n) d_ (29.+ I)2 (-) e _'j. (6)

Furthermore, by utilizing the addition theorem (9.4), we obtain /.].55
_O

' f _2 [2V (r) + _ • 7V (r) ] _',dvz= 4___k2_-_ (2_ + I) e2i'_9'x
1=0

2 (r) (2V + rV') dr (7)x (-1_F_ (_'l"_'2) _ *_
0

I
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By substituting (5) and (_ in formula (33.9) of the preceding sec,.ioe

and by comparing the members for the case of identical values of P , we

obtain actually a one dimensional formulation of the virial theorem

(28.15).

Let us note that all formulae which are examined here (and, in

particular, both formulations of the virial theorem) are applicable not

only in quantum mechanics but also for any given problem which is des-

cribed by equation (33.1); that is, for a problem concerning the defraction

of a flat wave on spatial inhomogeneity of finite dimensions.

The derivation of these formulae has a certain similarity to the

derivation of the virial theorem for molecules. Here, during the variation

of scale, it is necessary to change the wave number; therefore, the

derivative of the phase or scattering m,plitude by wave number enters
into the finite formula. In the case of a molecule the variation of scale

changes the distance between nuclei and the derivative of the overall

energy of the molecule enters into a finite formula according to the

distance between the nuclei (in an equilibrium position of the molecule

this derivative is reduced to 0).

§35. Variational Methods and the Scattering of Electrons
on the Thomas-Fermi Atom

The problem concerning the scattering of electrons on the neutral

atom with an arbitrary charge in the nucleus Z can be approximately solved

if we examine the atom in the Thomas-Fermi method. In this case, it is

eecessary to substitute the atom by means of the center of force with a

potential calculated from the Thomas-Fermi equation, which is expressed

through one _niversal function for any given Z

UZ (r)=- ZX_br ZI/3), (I)

where iZ!_

b : 0 8_5 I f3_2/3• : t.TJ ,

and x (x) satisfies the equation

x" = xl12x312; X (0) = 1, X (_) = O. (2)
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The scattering of e!ectrcns on the atom is described in this

approximation by the equation

[-_2 k2 2Z fr 3>],v + zll (7)=0. (3)u r

The wave function _ should have the asymptotic form

_ ikr
ikv .r

(k, Z; 7) ~ e + fkZ (7 • _) kr (4)

The problem is concluded in finding fkZ (_ " _)"

However, in this organization the problem is solved quite roughly

(in particular, we disregard the exchange and polarization of the atom

by a bombarding electron). It is still possible to obtain satisfactory

accord with an experiment even for slow electrons except when their

scattering occurs on great angles. The Thomas-Fermi potential yields a

poor estimation of the true distribution of electrons with large values

of r; therefore, the electron scattering on small angles (which occurs

primarily during "distant" collisions) does not yield conformity with the

exper imen t.

Equation (3) is easily solved in a Born approximation. In this

case, we obtain (Ref. 36)

fkZ (cos 0) = kZ 2/3 _kb sin 2 " Z-I/3j ' (5)

and thus, in thz_ mpproximation, f is expresscd through one universal

function for all value_ of k, Z and a.

Hc_aever, generally speaking, this formula is already illogical

with small values of k and equation (3) must be solved for e_nh value of

k and Z (Ref. i).

Let us look at the types of general formulae which can be /157

obtained in this case by using the variarional principle. The functional

(6.17) will have the form

Ikz [I2 (k, Z; 7); ll (k, Z; _)] =

=_ _2 [v2 + k2+ 2ZZrX_ zl/3>] _i dv . (6)

1965024352-167



163

A variation of the scale on this functional leads as usual to a formu-

lation of the virial theorem for the given case

- 2 J _2 i2_ r x _b + r dr r x ZI/ _I dT =

_f
= 4x _ • (7)

By simplifying the expression in the quadratic brackets,we have

2 j"_'2 FZ ZI/3_ i Z4/3x, zi/3"?LrX(b +_" (b 't'1 dT =- J_

_f
= 4;; _ • (8)

_owever, other than the variation of scale, it is possible to

conduct in this functional another variation of charge in the nucleus Z.

Let us substitute in the functional (6) Z for Z + cZ, leaving _I' _2
unchanged. Then it is possible to write

Ik,Z+cZ(_2'_l) = _k,Z+cZ{_z (k,Z + cZ;r) + 8_2,

_.](k,Z + cZ; 7) + 8_1]. (9)

hereby

_f
5f (_i' - -$2) = 8f (- cos _;) = - EZ _ . (I0)

By using a variational principle, we have

4_ $f

Ik,Z+EZ ('F2, _1) ='-_-EZ _-_'+ 0 (e2).
(11)

4

%
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On the other hand

Ik,z+_Z (T2' TI) =

{ r ,,3r= T2 V2 + k2 + 2 (Z + eg) x i(I + 6) --Z TI dT =r U b _

+ 0 (c2). (12)

Thus, we have two very similar formulae

2k _2 [Zx!,._. Z1/ + _ Z _1 dT =

bf
= - 4_k _-_ ; (8)

2k j" "/2 I_Z X (b zl/3_ )+ 3_ Z4/3 X' (.._ Z1/3_] _1 dT =

_f
= 4_z _-f . (I3)

Defi_nitely the s__m_type of formulae car be obtained also for partial
wave s

CO

1 Z4/3x, fr 7113"_7
2 2 (r) [Z x_ zl/3) + _
-- ._ jidr =

0

= - k o_ ; (14)

OD

0

= z --_ (15)dZ '

Here __ is the radio fvnctions of the _-th partial wave.
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It is also obviou_ from the considered example, that if the energy
operator H, in the case of a certain problem in the colli_ion theory,
contains a parameter, the variation of which changes scattering amplitude
in the asymptotic form of the wave function only, then we can easily__9
obtain an expression for the derivative from the phase or scattering
amplitude along this parameter, by utilizing the variational principle.
This assertion foliows directly from the fact that the scattering ampli .o
tude and the phase are stationary values of some functionals.

§36. The Viria?[Theorem and the Born Method

Let us explain the aspect that formulae (28.14) and (33.9) will
have in the presence of great values of k when the Born approximation is
valid. For the problem concerning the scattering of partic]es by the
center of force, we have the following approximate expression for the
phases (10.37)

= r dr. (1)
0

The approximate solution to the equation for the radio functions
is

,, r 2 I)
2 - V (r)_ ¼£ = O; _ (0) = O, (2)

r

if V (r) is considered small in comparison with k2 it is well known
(10.34) that

f_kr_'I/2 v (kr) (3)
(r) _ _ (kr) = k-_--J _ �$�$�"

These solutions have the asymptotic form

_, _ sin (kr - _). (4)

By substituting (3) in (I), we have

_£ = - _ V (r) (kr) dr. (5) .i
o

2
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In order to obtain an equation analogous to formula (28.14},
we will differentiate formula (5) through k. We have

d'___= i__ 2
V (r) _ (kr) dr-dk

k 2
0

- _. V (r) [ (kr)] dr. (6)
0

(

It is now possible to utilize the fact that theapproximate solt,,tion to

equation (2) @_ is aependent only on the derivative kr, and we will
substitute the differentiation through k by the differentiation through
r in the second integral. Actually

2 _r 2 '

2 r _ 2
_-f_ - k _r_ " (7)

Let us substitute (7) in (6) and integrate through the parts

0 0

k2 V (r) _dr + _-_ _£ _'r [r V (r)] dr =
0 0

f __2 dV= 1 n 0 (2V + r _rr ) dr (8)k 2 ~ •
0

Thus, in the framework of the Born method, formula (28.14) is fulfilled
if, instead of an exact wave function, we substitute an approximate
function (3) and calculate the phases according to formula (I).
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Analogously it is possible to investigate a general problem of

scattering of particles by a field of forces. In this case. the wave

functions at great distances from the center of force have the asymptotic
form

ik_ ._ eikr

? (_1 "_e + fk (_' nl _ • (91

In the Born approximation fk (_' n) can be calculated according to
formula (10.261.

fk (_' _) = - 4_ _[ V (r) eik(_ - _) "{ d_. (I0)

Let us differentiate this equation through k

_f i _ - "---4-_ v _1 eik(_ _)-rdr-

" 4-_ V (_) _ e dT. (Ii)

Let us substitute again the differentiation through k in the second

integral by the differentiation through the coordinates. We have

d eik_-_1"_ _ ik_ -n).7d-_ - i _ -n) re ;

veik(_ - n).r = ik (_ - n) eik(_ " n).r.J

-e --_

d ik(v - n)._ i -' veik(u - n).rd-_e --i r • (121

ThT_

_-_f _! j_ ik(_ - n)"_
=- _-- V (r) e d7 -

_L
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We utilize the vector identity

div (_) = _ div A+ A • V_ (14)

and we le t

ik(_-n).r_=Tv, _=e

then

..@

_f i f ik(_ n)-r= - 4-_ V (r) e d7 +

--) --9 -_

1 f eik(u - nl.r div [r V (r)] d7 -+_

Ii' [ " ;).r]JT. (15)" 4-_ div r V (r) eik(_ "

Furthermore, we have

div [3 V (3)] = V div _ + _ • W = 3V + _ • W. (16)

Furthermore, the last integral in formula (15) can be reorganized into a

superficial integral and it is reduced to zero at the limit if V decreases

rapidly enough. Finally, we obtain

_k = j e [2V (_) + r • _V (_)] e d_. (17)
4_

Thus, we have obtained formula (33.9) _u which flat waves were

substituted instead of the functions _i and _ .

§37. The Virial Theorem for the Problem 3oncerning the Collision

of Electrons with aL_ Atom. The PossiSility of Applying the
Theorem in Numerical Calculation

The case of electron scattering on an atom of hydrogen can be

examined exactly the same way as the scattering on the center of force.
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In the complete wave function '_ (31, r2) it is necessary to vary

the ._',calesimultaneously by both arguments. _us, for instance with

great values of r2, the varied non-sy_netrized wave function will have

the asymptotic form:

_(i) _-_(i) + 5_(i) = y(i) (_I + e_l' r2 + c_2)

ik_.(_ 2 + 652 )

• (_I+ _I ) e +~%i

ikn(r2+er 2)

I -* e
+ fin (_' n2) kn (r2 + _r2) _n (_I + crl)" (i)

As can be seen, the appearance of the atomic wave functions likewise

changes in an asymptotic resolution. As we see, the appearance of the

atomic wave functions in an asymptotic resolution likewise changes. As

a result, it is essential to use the variational principle formulated in

Section 8, Chapter I where the potential of such a variation is taken

into consideration. Furthermore, the argument is conducted in identi-

cally the same manner as it was in Section 8, and we come to the formulae

_ _J) (_i' 72) (2V+ 71 • VI V+ _2 V2 V) _i) (71, _2 ) dTld¢2 =

4_ _fi_ (Vl' " _2 ) (2)
=_j bk '

4_ _gij (_' - _2 )
=i7 bk ' (3)

3

The potential V has, for a given problem, the form

v =---2 _ 2_+ 2 (4)
rI r2 r!2
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and is a homogeneous function on the order of - I. Let us utilize the

Euler theorem and, in addition, we shall come to the symmetrized func-
tions _±. Then

± _i) (32, _i)] dTI dT 2 =

4_ _ (_i - 72) ± (_i " _2 )1" (5)
- kj _k [fij ' gij '

If partial waves are considered for this same problem (for instance, the

S-wave) then it is possible in the same manner to obtain the formulae

for the derivative of the phase. These formulae are analogous to

formula (28.15).

The virial theorem,which was proven in this" chapter in the case

of various problems, may be utilized for the purpose of simplification

or confirmation of calculations in the collision theory.

Let us note first of all that the virial theorem will be rigorously

fulfilled for phases and wave functions calculated according to the vacia-

tional method, if the variation of scale enters into the number of varia-

ble parameters. This assertion is fulfilled first of all for calculation
in the method of a self coordinated field with and without the considera-

tion of exchange (for instance, for the Morse and Allls (Ref. 3)

calculation).

Unfortunately, the wave functions obtained as a result of these

calculations were not published, and therefore a similar confirmation is

impossible.

If the variation of scale did not enter into a number of the

variable parameters [as it did, for example, in the work of Massey and

Moiseiwitsch (Ref. 21)] then the virial theorem would be fulfilled only

_,proximately. In this case the check can serve as a criterion of

a_Jcuracy in the method. If the value d_ which was obtained in thedk'

ylrlal theorem is substantJally distinct from that which will be received

in diCect differentiation of the calculated phase _ (k), then it is obvious

that either of the number of variable parameters is too small or the

initial form of the wave function was unsuccessfully selected.
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It is also obvious that, if we know the value of the phase

simult_ eously with its derivative, the number of points which must be

taken for the construction of the curvo _ (k) can be significantly
decreased.

Let us note that in the calculation of collisions of am electron

with an atom the magnitude or the _ is expressed _hrough a matrix

element of the potential energy V, and thUS for the determinstion of

these magnitudes no additional calculations are required.

The virial theorem for the scattering of particles by the center

of force (Sections 28, 33, 34) was formulated in the work (Ref. 39). A

generalization to more complicated problems (Section 37_ and likewise _T

certain other results (Sections ql, 32, 35, 36), which were given in this

chapter are contained in the dissertation ef the author (Ref. 38).

The methods which were examined nere were likewise applied in the

work of Yu. V. Novozhiiov (Ref. 32) for relativistic problems and

problems of the quantum theory of _ield.
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CO_USTON

The variational principles in collision theory were formulated

comparatively recently and are still only beginning to find application

in theoretical reasonings and ntnnerical calculations. However, already

it is possible to assert that the variational principles permit the

examination of well known facts from a modern point of view. They enable

ub to obtain a series of new theoretical results by a simpler method and
to elaborate on new effective methods of calculation.

In the contents cf the book it is seen that almost all divisions

of the collision theory are in one way or another related to variational

principles; of course, all such divisions have not been examined here.

Thus, for example, the investigation of analytical characteristics of the

scattering operator, the resonance formula, the be_avior of the phase in

the case of little energy, the connection betwe6n discrete and the
_ntinuo'_ spectrum -- all these questions are either directly or in-

directly related to variational principles (the Schwinger variational

priLciple, the virial theorem, etc.). To date, man}, problems have beeu

insufficiently studied and still wsit their solution.

That which concerns numerical ce]-=ulations is the fact that

evide,ltly only variational methods permit an effective and rigorous

consideration, for example, of such phenomena as polarization of the atom

by a bombardiz,g electron and the collection of results, in principle, of

the _ame Iegree of accuracy achieved in calc:llation of energy levels of

atoms and molecules. In spite of this, experience in the production of

such calculations has been accumulated quite slowly. To date in a majority

of works either a one dimensional equation fcr the phase or the equation

of the self coordinated field was solved, i.e., those problems which can

be solved by different z,umerical methods especially in the presence of

electronic machines. The problerl of variational calculations /16_
consists, first of all, in the indispensability of extremely exhausting

calculations of matrix elements. Of course, this work has with diffi-

culty yielded to mechanization In addition, problems concerning

selection of tcial functions and convergeability of various methods have

been poorly investigated in comparison with the discrete spectram.

However, these difficulties are surmountab]e and, thanks primarily

to them, investigations iu this new region have become of special interest.

Translated by Joseph L. Zygielbaum

Electro-Optlcal Systems, Inc.

Pasadena, California
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